第一篇:【教案三】9.3一元一次不等式组
9.3一元一次不等式组(3)
教学目标
1.知识目标:根据具体问题中的数量关系,列一元一次不等式组解决简单的实际问题.2.能力目标:让学生学会从数学的角度运用所学的知识解决问题,发展应用意识.3.情感目标:通过解决实际问题,让学生初步认识数学与人类生活的密切联系.教学重点
用一元一次不等式组的知识去解决实际问题.教学难点
根据题意列不等式组.教学方法
启发诱导式教学.教学过程
1.创设情境,自然引入
例:一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满.(1)设有x间宿舍,请写出x应满足的不等式组;(2)可能有多少间宿舍、多少名学生? 这是一个含有不等关系的应用题,实际上和列方程解应用题的步骤相似,列方程解应用题的步骤有“审题,设未知数;找相等关系;列方程;解方程;写出答案。”
类比猜想出解不等式组应用题的步骤有“审题,设未知数;找不等关系;列不等式组;解不等式组;写出答案。”
解:(1)设有x间宿舍,则有(4x+19)名女生,根据题意,得
6x4x19 6(x1)4x19(2)解不等式组,得
9.5<x<12.5 因为x是整数,所以x=10,11,12.因此有三种可能,第一种,有10间宿舍,59名学生;
第二种,有11间宿舍,63名学生; 第三种,有12间宿舍,67名学生.2.变式训练,巩固提高
(1)一堆玩具分给若干个小朋友,若每人分2件,则剩余3件;若前面每人分3件,则最后一个人得到的玩具数不足2件.求小朋友的人数与玩具数.解:设小朋友的人数为x,则玩具数为(2x+3)件,根据题意,得
3(x1)2x3 2x33(x1)2解不等式组,得
4<x≤6 因为x是整数,所以x=5或6,当x=5时2x+3=13 当x=6时2x+3=15.因此,当有5个小朋友时,玩具数为13个;
当有 6个小朋友时,玩具数为15个.(2)已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米,做一套N型号时装需用A种布料1.1米,B种布料0.4米,若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装有几种方案?
解:生产N型号的时装套x时,则生产M型号的时装为(80-x)套,根据题意,得
0.6(80x)1.1x70 解不等式组,得 40≤x≤44 0.9(80x)0.4x52因为x是整数,所以x的取值为40,41,42,43或44.因此,生产方案有五种.①生产M型40套,N型40套; ②生产M型39套,N型41套; ③生产M型38套,N型42套; ④生产M型37套,N型43套; ⑤生产M型36套,N型44套.(3)某人拿100元钱到商场买一些饮料.用去60元后,他又买了4千克香蕉,每千克3元;买了5千克苹果,付钱后尚有剩余,如果他买6千克香蕉和6千克苹果,则所带钱款不够用.求苹果的价格是多少元.解:设苹果每千克x元.由题意得345x100601128 解得<x<.35636x100601128元到元之间.35答:苹果的价格在(4)某高一新生中,有若干住宿生,分住若干间宿舍,若每间住4人,则有21人无处住;若每间住7人,则有一间不空也不满.求住宿生人数.解:设有x间宿舍,则总人数为(4x+21)人.由题意得:4x217x
4x217(x1)28.328.3①② 解不等式①得x>7.解不等式②得x<∴这个不等式组的解集是7<x<∵房间数只能取正整数.∴x=8或9.当x=8时,人数:4×8+21=53(人)当x=9时,人数:4×9+21=57(人)4.总结串联,纳入系统
总结用不等式组解决实际问题的基本过程.(1)审题、设未知数;
(2)找不等关系;(3)列不等式组;(4)解不等式组;
(5)根据实际情况,写出答案.教学检测
1.某工人制造机器零件,如果每天比预定的多做一件,那么8天所做的零件超过100件,如果每天比预定的少做一件,那么8天所做零件数不到90件.这个工人预定每天做几个零件.2.某企业有员工300人,生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数).为减员增效,决定从中调配x人去生产新开发的B种产品,根据评估,调配后继续生产A种产品的员工平均每人每年创造的利润可增加20%.生产B种产品的员工平均每人每年创造利润1.54 m万元,若要求调配后,企业生产A种产品的年利润不小于调配前企业年利润的4,生产B种产品的年利润大于调配前企业年利润的一半,应有几种调配方案? 5请设计出来,并指出其中哪一种方案全年总利润最大(必要时运算过程可保留三个有效数字)3.火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A、B两种型号的车厢将这批货物运至北京,已知每节A型货厢的运费是0.5万元,每节B节货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,共有哪几种方案?请你设计出来;并说明哪种方案的运费最少?
4.乘某城市的一种出租车起价是10元(即行驶路程在5 km以内都需付费10元),达到或超过5 km后,每增加1 km加价1.2元(不足1 km部分按1 km计),现在某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?
5.某城市的一种出租车起步价都是10元(即行驶路程在5公里以内都需付10元车费),达到或超过5公里后,每增加1公里加价1.2元(不足1公里部分按1公里计).现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地路程大约是多少?
6.某公司计划明年生产一种新型环保电视机,下面是公司部门提供的数据信息: 人事部:明年生产工人不超过80人,每人每年工作时间约2400工时; 营销部:预测明年销量至少是10000台;
技术部:生产一台电视机,平均用12个小时,每台机器需要安装5个某种主要部件; 供应部:今年年终将库存主要部件2000件,明年能采购到这种主要部件为80000件.根据上述信息,明年生产新型电视机的台数应控制在什么范围内?
参 考 答 案
1.解:设这个工人预定每天做x个零件.由题意得8(x1)100
8(x1)90① ② 23.249解不等式②得:x<.4解不等式①得:x>∴这个不等式组的解集为
4923<x<.42∵零件数只能为正整数,∴x=12.答:预定一天做12件.4(300x)(120%)300m52.解:由题意得
11.54mx300m2解这个不等式组得
9731<x≤100 77∵x为正整数,∴x只能取98、99、100.∴共有三种调配方案.①种:202人生产A种产品,98人生产B种产品; ②种:201人生产A种产品,99人生产B种产品; ③种:200人生产A种产品,100人生产B种产品.而调配后企业全年利润可表示为(300-x)(1+20%)m+1.54mx=0.34mx+360.将x=98,99,100分别代入得x=100时,获利最大.3.解:设A型货厢用x节,则B型货厢用(50-x)节,根据题意,得
35x25(50x)1530 15x35(50x)1150解不等式组,得 28≤x≤30 因为x为整数,所以x取28,29,30.因此运送方案有三种.(1)A型货厢28节,B型货厢22节;(2)A型货厢29节,B型货厢21节;(3)A型货厢30节,B型货厢20节;
设运费为y万元,则y=0.5x+0.8(50-x)=40-0.3x 当x=28时,y=31.6 当x=29时,y=31.3 当x=30时,y=31 因此,选第三种方案,即A型货厢30节,B型货厢20节时运费最省.4.解:设甲地到乙地的路程大约是x km,据题意,得
16<10+1.2(x-5)≤17.2,10<x≤11.即从甲到乙路程大于10 km,小于或等于11 km.5.解:设从甲地到乙地的路程是x km,根据题意,得:
17.2≤10+1.2(x-4)<18.4.解这个不等式组得,10≤x<11.答:从甲地到乙地的路程大于或等于10 km小于11 km.x100006.解:设明年生产x台,依题意得12x802400
5x200080000解得10000≤x≤16000.答:明年生产电视机的台数应控制在10000台到16000台之间.
第二篇:9.3一元一次不等式组教案
9.3 一元一次不等式组(第1课时)
西吉三中 刘征兵
教学设计思想
准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。本节教学的重点是一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。在学习的过程中有问题引入新课,引导学生充分讨论,得出所要的不等式组,进而研究不等式组的解法及其用数轴的表示,通过练习来巩固如何解不等式组。最后学习的是不等式组在现实生活中的简单应用。
教学目标
1.使学生知道一元一次不等式组及其解集的含义,会利用数轴求一元一次不等式组的解集;
2.使学生逐步学会用数形结合的观点去分析问题、解决问题. 知识目标
经历通过具体问题抽象出不等式组的过程;
表述一元一次不等式组及其解集的意义,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。
能力目标
体会运用不等式组解决简单实际问题的过程,提高学习热情和积极性,进一步发展符号感与数学化的能力。
情感目标
通过用数轴表示不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美,体会数形结合的思想。
重点:一元一次不等式组和它的解法,及用一元一次不等式组解决实际问题。难点:求不等式组中各个不等式解集的公共部分,及根据实际情况列出不等式组。解决办法:不等式组的解集通过数轴来表示简单明了,关于不等式组的应用要仔细审题以小组讨论的形式引导学生找出题中的不等关系,进而列出不等式组。
教学方法
引导发现法、小组讨论交流。
分即不等式组中未知数的可取值范围。
由不等式①解得x<13。由不等式②解得x>7。
从图9.3—2容易看出,x可以取值的范围为7 注:利用数轴可以直观形象地认识公共部分。这个公共部分是两端有界的开区间。这就是说,当木条c比7 cm长并且比13 cm短时,它能与木条a和b一起钉成三角形木框。 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 注:这里正式给出不等式组的解集以及解不等式组的定义。例1 解下列不等式组: 解:(1)解不等式①,得x>2。解不等式②,得x>3。 把不等式①和②的解集在数轴上表示出来(图9.3—3)。 注:这个不等式组的解集是左端有界的开区间。 从图9。3—3可以找出两个不等式解集的公共部分,得不等式组的解集x>3。(2)解不等式①,得x≥8。 x45解不等式②,得 这两个不等式的解集没有公共部分(图9.3—4),不等式组无解。 9.3 一元一次不等式组(2) 文星中学唐波 一、教学目标 (一)知识与技能目标 1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。 2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。 (二)过程与方法目标 通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。 (三)情感态度与价值观 通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。 二、教学重难点 (一)重点:建立用不等式组解决实际问题的数学模型。 (二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。 三、学法引导 (一)教师教法:直观演示、引导探究相结合。 (二)学生学法:观察发现、交流探究、练习巩固相结合。 四、教具准备:多媒体演示 五、教学过程 (一)、设问激趣,引入新课 猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。) (二)、观察发现,竞赛闯关 1、比一比:填表找规律 (学生抢答,教师补充。)2利用发现的规律解不等式组 (学生解答,抽生演板。)你可以得到它的整数解吗? (抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶 数,则 c=__________。 (学生回答,教师补充更正。) (三)、欣赏图片,探究新知 1、欣赏“五岳看山”。 2、利用欣赏引出例题(教科书P139例2仿编) 例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张? 生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题: (1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的? (2)解决这个问题,你打算怎样设未知数? (3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。) 7x98 7(x3)98 解答完成后,学生自学课本例2。 3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤: (1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; . (4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。) (四)、闯关练习,巩固新知 1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。 教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。 比较列二元一次方程组和列一元一次不等式组解应用题的区别: (学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)? 学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。) (五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结: 1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。 2、具有多种不等关系的问题,可通过不等式组解决。 3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组; (4)、检验,根据题意写出答案。 (六)、课后演练,终极挑战 必做题:教材习题9.3第4、5、6题; 选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少? 六、板书设计 9.3一元一次不等式组(2) 解:设每个同学原计划每天拍x张,得 ① 310x500 310(x1)500② 1、分析题意,设未知数; 解得x <16 3 3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。 2 2、找不等关系,列不等式组; 3、解不等式组; 步骤 4、检验并根据题意写出答案。 《9.3一元一次不等式组(2)》教学设计说明 河南师范大学附属中学付 帅 一、教材分析 本节课是人教版七年级下册第九章第3节的第2课时,主要研究的内容是利用一元一次不等式组的相关知识解决实际问题,即一元一次不等式组的应用.一元一次不等式组是解决实际问题的重要工具之一,引导学生构建一元一次不等式组的数学模型是解决实际问题的关键,因此本节课具有重要的数学地位.二、教学目标 因为构建一元一次不等式组的数学模型是解决实际问题的关键,所以本节课的主要目标是引导学生学会构建一元一次不等式组的数学模型,因此,结合学生情况,我制定了如下的教学目标: 1.通过对实际问题的分析,能够建立一元一次不等式组的数学模型,并利用一元一次不等式和一元一次不等式组的知识求解;能根据具体的实际意义对结果进行检验.2.经历利用一元一次不等式组解决实际问题的过程,学会用数学建模的思想方法去观察、研究和解决日常生活中所遇到问题,体验数学建模的思想.3.通过将一元一不等式组的有关的知识灵活用于实际,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感. 三、教学重、难点 因为构建一元一次不等式组的数学模型是解决实际问题的关键,所以本节课的重、难点是如何从实际问题中抽象出数学模型,列出一元一次不等式组,将实际问题转化为一元一次不等式组的数学问题.突破重、难点的方法是通过学生课前自学、课中小组讨论、互相答疑等过程,引导学生找准题中的关键词,能把题中的条件等价转化为不等关系,同时对于题中条件和数据较多时,引导学生利用列表法将题中数据和数量关系分析清楚.四、教学方法 本节课采用“导学自主”的教学思想,通过创设情境引发学生思考,引导学生积极动手动脑进行探索.教学环节的设计与展开都以生活中的常见问题为出发点,让学生在自主探索及合作探究的过程中,形成自己的观点,从而完成教学目 标.五、教学过程 美国心理学家布鲁纳说:学习的最好的动力是学习材料的兴趣.因此,在认真分析教材、教法、学法的基础上,设计教学过程如下:(一)情境引入: 以世界著名数学家华罗庚先生曾经说过这样一句话“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在”引入,以小明同学在参观学习过程中发现的问题为例将实际问题和数学问题联系起来,使学生感受到数学在我们的生活中无处不在,体会到学习数学知识的价值.设计意图:通过情景引入,激发学生学习的兴趣.(二)知识链接 x10 1.解不等式组:(1).(2)12x35.x302.解一元一次不等式组的一般步骤: (1)求出不等式组中各个不等式的____________;(2)利用数轴求出这些不等式的解集的________________.设计意图:采用教师提问学生和学生互相提问相结合的方式复习已有知识,使学生的思维更加活跃,为新旧知识的迁移打下坚实的基础.(三)问题探究 问题1.小明和同学们到某工厂参加社会实践活动,在生产车间,小明听到了几 请根据上述对话内容和小明一起求出每个小组原先每天生产多少件产品.活动设计:小组长负责组织本组成员订正学案、互相答疑,学生讲解、同学质疑、教师点评.教师点评后,从以下两方面引导学生思考: 1、解决此类问题的关键是什么? 解决此类问题的关键将题中条件等价转化为不等关系.2、类比利用方程组解决实际问题的一般步骤,总结出应用一元一次不等式组解决实际问题的一般步骤: (1)审:审题,分析题目中已知什么,求什么,明确各数量之间的关系;(2)设:设适当的未知数; (3)找:找出能表示应用题全部含义的不等关系;(4)列:根据不等关系列出不等式组;(5)解:求出这个不等式组的解集;(6)验:检验并找出不等式组的特殊解;(7)答:写出符合题意的答案.问题2.小明所在的七年级师生要到北京参加夏令营,下面是小明等同学和老师在商量如何租车时的一些对话: 老师:我们七年级290名师生要到外地参观学习,共携带有100件行李.计划租用甲、乙两种型号汽车共8辆.小明:甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.小强:甲、乙两种汽车每辆的租车费用分别为2000元、1800元.请根据上面的对话,帮助小明解答下列问题:(1)请设计出可能的租车方案; (2)如果你是负责人,你会选择哪种租车方案? 活动设计:小组讨论,学生讲解,自评利弊,同学纠错、教师点评.教师点评后,引导学生思考,当题目中数据和数量关系较多时,如何更好地处理这些数据和数量方法?进而引导学生列出如下的表格,把相应的数据填入表格内,这样可以帮助我们分析题目中的数量关系,从而轻松地列出不等式组.我们 通常称这种方法为“列表法”.设计意图:通过一系列数学活动为学生搭建展示自我的平台,深入体会学生的思维过程,尊重学生的个人感受和独特见解,使学生感受学习的快乐和成功的喜悦.(四)当堂检测 当天晚上小明等师生被安排到某宾馆休息,安排好房间后,小明和几个同学准备出去转转,走进宾馆大厅,小明等同学看到一片嘈杂的人群,原来是一个前来住宿的旅行团.此时,小明断断续续听到前台服务员和该旅行团的一些对话:请给我们旅行 团安排一下房 间.请根据上面的对话内容,和小明一起计算该旅行团的可能人数.活动设计:学生独立完成,小组PK,看哪个小组的方法多.设计意图:通过该题检测学生利用一元一次不等式组自己解决实际问题的掌握情况,同时通过小组PK,激发学生的竞争意识和学习兴趣.(五)归纳总结 通过学生谈本节课的收获,引导学生总结出应用一元一次不等式组解决实际问题的一般思路,并将构建一元一次不等式组的数学模型解决实际问题的数学方法提升为“建模思想”.“若全租双人间,则剩19 人无房住;若全租三人间,不仅可少租一间房而且有一间房住不满”.1、应用一元一次不等式组解决实际问题的一般思路: 找出 实际问题 不等关系 列出 不等式 解决 求解 组成结合实际题意(六)布置作业 吃得饱.选做题: 不等式组 2、构建一元一次不等式组的数学模型解决实际问题的数学方法,即建模思想.结合学生的情况,分层布置作业,让“学困生”吃得好,让学有余力的同学 必做题:P142习题9.39 根据本节所学内容,自编一道应用一元一次不等式组求解的应用题并解答.最后以“感悟数学,快乐生活”为结束语,一是愿同学们快快乐乐生活,二是回应开头语“数学无处不在”. 一元一次不等式组教案 教学目标: 1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法; 2、经历知识的拓展过程,感受学习一元一次不等式的必要性; 3、逐步熟悉数形结合的思想方法,感受类比和化归思想。 4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。 5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点: 重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程: 呈现目标 目标一:创设情景,引出新知 (教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求? (教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨 数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1 2x+3≥x+11 -1<2-x 目标三:归纳总结 反馈矫正 解下列不等式组(1) 3x-15>0 7x-2<8x(2) 3x-1 ≤x-2-3x+4>x-2 (3) 5x-4≤2x+5 7+2x≤6+3x (4) 1-2x>4-x 3x-4>3 归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4 x>4 x<4 x>4 X<2 x>2 x>2 x<2 X<2 x>4 2<x<4 无解 教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高 知识拓展 《完全解读》第230页 已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。 探究合作 小组学习:各学习小组围绕目标 一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚; 教师引导:(1)什么是不等式组? (2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的? 展示点评 分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。 教师点评:教师推荐解不等式组口决。 巩固提高 教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。第三篇:9.3 一元一次不等式组教案
第四篇:教学设计说明--9.3一元一次不等式组
第五篇:一元一次不等式组教案