不等式教案

时间:2019-05-15 05:54:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式教案》。

第一篇:不等式教案

第一讲

不等式和绝对值不等式

教学目标

1.掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。2.理解并能运用基本不等式进行解题。

3.理解绝对值的几何意义及绝对值三角不等式。4.会解绝对值不等式。

重点:

1.不等式的基本性质; 2.基本不等式及其应用;

3.绝对值的几何意义及其绝对值三角不等式。

难点:

1.三个正数的算术-几何平均不等式及其应用; 2.绝对值不等式的解法;

1、不等式的基本性质

• 实数的运算性质与大小顺序的关系:

• 数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:

abab0abab0abab0

• 得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。例

1、比较(x+3)(x+7)和(x+4)(x+6)的大小。

解:因为(x+3)(x+7)-(x+4)(x+6)

=x2+10x+21-(x2+10x+24)

=-3<0,所以(x+3)(x+7)<(x+4)(x+6)类比等式复习不等式的其他性质(注意符号)

等式的性质1.a=bb=a2.a=b,b=ca=c3.a=ba+c=b+c(对称性)(传递性)(可加性)a=b,c=da+c=b+d(加法法则)4.a=bac=bc(可乘性)a=b,c=dac=bd(乘法法则)nna=ba=b(n∈N,n>1)(乘方性)5.a=bna=nb(开方性)1.a>bbb,b>ca>c3.a>ba+c>b+c不等式的基本性质(对称性)(传递性)(可加性)(加法法则)a>b,c>da+c>b+d4.a>b,c>0ac>bc(可乘性)a>b,c<0acb>0,c>d>0ac>bd(乘法法则)5.a>b>0an>bn(n∈N,n>1)(乘方性)6.a>b>0na>nb(开方性)1.如果a>b,c>d,那么a+c>b+d

2.如果a>b>0,c>d>0,那么ac>bd 类比等式的性质复习不等式性质证明(2)因为a>b>0, c>d>0,由不等式的基本性质(3)可得ac>bc, bc>bd,再由不等式的传递性可得ac>bc>bd

ab例:已知a>b>0,c>d>0,求证>.dc

练习:

1、判断下列各命题的真假,并说明理由:(1)如果a>b,那么ac>bc;(假命题)

(2)如果a>b,那么ac2>bc2;(假命题)

(3)如果a>b,那么an>bn(n∈N+);(假命题)(4)如果a>b, cb-d。(真命题)

2、比较(x+1)(x+2)和(x-3)(x+6)的大小。

解:因为(x+1)(x+2)-(x-3)(x+6)

=x2+3x+2-(x2+3x-18)

=20>0,所以(x+1)(x+2)>(x-3)(x+6)小结:理解并掌握不等式的八个基本性质

作业:课本P10第3题。求证:

(1)如果a>b, ab>0,那么

(2)如果a>b>0,c

选做题:设a≥b,c≥d,求证:ac+bd≥

(a+b)(c+d)

2、基本不等式

定理1

如果a, b∈R, 那么

a2+b2≥2ab.当且仅当a=b时等号成立。

探究: 你能从几何的角度解释定理1吗?

分析:a2与b2的几何意义是正方形面积,ab的几何意义是矩形面积,可考虑从图形的面积角度解释定理。如图把实数a,b作为线段长度,以a≥b为例,在正方形ABCD中,AB=a;在正方形CEFG中,EF=b.bAHaIKDGFbBJaCbE则S正方形ABCD+S正方形CEFG=a2+b2.S矩形BCGH+S矩形JCDI=2ab,其值等于图中有阴影部分的面积,它不大于正方形ABCD与正方形CEFG的面积和。即a2+b2≥2ab.当且仅当a=b时,两个矩形成为正方形,此时有a2+b2=2ab。定理2(基本不等式)如果a,b>0,那么ab2ab称为a,b的算术平均当且仅当a=b时,等号成立证明:因为(=a+b-2 ab≥0,ab)2所以a+b≥2ab,上式当且仅当ab,即a=b时,等号成立。C称为a,b的几何平均AODB如图在直角三角形中,CO、CD分别是斜边上的中线和高,设AD=a,DB=b,则由图形可得到基本不等式的几何解释。两个正数的算术平均不小于它们的几何平均。例3求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短;周长L=2x+2yxSy定理:设x,y都是正数,则有

1)若xy=s(定值),则当x=y时,x+y有最小值2s.p2 2)若x+y=p(定值),则当x=y时,xy有最大值.4abc定理3 如果a,b,cR,那么abc,当且仅3当abc时,等号成立。即:三个正数的算术平均不小于它们的几何平均。

例4: 某居民小区要建一做八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为200平方米的十字型地域.计划在正方形MNPQ上建一座花坛,造价为每平方米4200元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价没平方米210元,再在四个空角(图中四个三角形)上铺草坪,每平方米造价80元.(1)设总造价为S元,AD长x为米,试建立S关于x的函数关系式;

(2)当为何值时S最小,并求出这个最小值.3、三个正数的算术-几何平均不等式

注:一正、二定、三等。

把基本不等式推广到一般情形:对于n个正数a1,a,,an,它们的算术平均不小于它们的几何平均,即:a1a2ann a1a2an,n当且仅当a1a2an时,等号成立。

二、绝对值不等式

1、绝对值三角不等式实数a的绝对值|a|的几何意义是表示数轴上坐标为a的点A到原点的距离:|a|OAax任意两个实数a,b在数轴上的对应点分别为A、B,那么|a-b|的几何意义是A、B两点间的距离。|a-b|AaBbx 联系绝对值的几何意义,从“运算”的角度研究|a|,|b|,|a+b|,|a-b|等之间的关系:分ab>0和ab<0两种情形讨论:(1)当ab>0时,如下图可得|a+b|=|a|+|b|xOaba+ba+bbaOx(2)当ab<0时,也分为两种情况:如果a>0,b<0,如下图可得:|a+b|<|a|+|b|bOaxa+b如果a<0, b>0,如下图可得:|a+b|<|a|+|b|aOa+bbx(3)如果ab=0,则a=0或b=0,易得:|a+b|=|a|+|b| 定理1 如果a, b是实数,则 |a+b|≤|a|+|b| 当且仅当ab≥0时,等号成立。

探究

如果把定理1中的实数a, b分别换成向量a, b, 能得出什么结果?你能解释它的几何意义吗?

已知a,b是实数,试证明:ab≤ab(当且仅当ab≥0时,等号成立.)证明:10.当ab≥0时, 20.当ab<0时, ab|ab|,|ab|(ab)2a22abb2|a|22|ab||b|2|a|22|a||b||b|2(|a||b|)2ab|ab|,|ab|(ab)2a22abb2|a|22|a||b||b|2(|a||b|)2|a||b||a||b|综合10,20知定理成立.探究

你能根据定理1的研究思路,探究一下|a|,|b|,|a+b|,|a-b|等之间的其他关系吗?例如:|a|-|b|与|a+b|,|a|+|b|与|a-b|,|a|-|b|与|a-b|等之间的关系。|a|-|b|≤|a+b|, |a|+|b|≥|a-b|, |a|-|b|≤|a-b|.如果a, b是实数,那么 |a|-|b|≤|a±b|≤|a|+|b| 定理2 如果a, b, c是实数,那么

|a-c|≤|a-b|+|b-c| 当且仅当(a-b)(b-c)≥0时,等号成立。证明:根据绝对值三角不等式有

|a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c| 当且仅当(a-b)(b-c)≥0时,等号成立。例1 已知ε>0,|x-a|<ε,|y-b|<ε,求证: |2x+3y-2a-3b|<5ε.证明: |2x+3y-2a-3b|=|(2x-2a)+(3y-3b)| =|2(x-a)+3(y-b)|≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|<2ε +3ε=5ε.所以 |2x+3y-2a-3b|<5ε.例2 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10km和第20km处。现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次。要使两个施工队每天往返的路程之和最小,生活区应该建于何处?

分析:假设生活区建在公路路碑的第xkm处,两个施工队每天往返的路程之和为S(x)km,则有

S(x)=2(|x-10|+|x-20|),要求问题化归为求该函数的最小值,可用绝对值三角不等式求解。练习:课本P20第1、2题.求证:(1)|a+b|+|a-b|≥2|a|(2)|a+b|-|a-b|≤2|b| 2.用几种方法证明

1|x|2(x0)x小结:理解和掌握绝对值不等式的两个定理: |a+b|≤|a|+|b|(a,b∈R,ab≥0时等号成立)|a-c|≤|a-b|+|b-c|(a,b,c∈R,(a-b)(b-c)≥0时等号成立)

能应用定理解决一些证明和求最值问题。作业:课本P20第3、4、5题

(1)|ax+b|≤c和|ax+b|≥c(c>0)型不等式的解法:

①换元法:令t=ax+b, 转化为|t|≤c和|t|≥c型不等式,然后再求x,得原不等式的解集。②分段讨论法:

axb0axb0|axb|c(c0)或

axbc(axb)c

axb0axb0 |axb|c(c0)或 axbc(axb)c|ax+b|c(c>0)型不等式比较:类型|ax+b|-c} ∩{x|ax+bcax+b<-c或ax+b>c{x|ax+b>c}, 并课堂练习:P20第6题

第二篇:均值不等式教案

§3.2 均值不等式

【教学目标】

1.理解均值不等式

2.能利用均值不等式求最值或证明不等式

【教学重点】

掌握均值不等式

【教学难点】

利用均值不等式证明不等式或求函数的最值,【教学过程】

一、均值不等式:

均值定理:如果a,bR,那么_______________________(当且仅当_______时取等号)证明:

定理说明:

ab1、称为正数a,b的______________称ab为正数a,b的___________因2此定理又叙述为:________________________________________

2、几种变形:

(1)ab2ab

(_______________)

ab

(2)ab

(_______________)

2

(3)a2b22ab

(_______________)

3、应用定理注意的问题:

(1)应用定理的条件_____________________

(2)定理注意_____________________

二、定理应用:证明简单的不等式或求最值

ba例

1、已知ab0,求证:2

ab

1例

2、当x0时,求x的最值,并求取最值时x的值.x

211变式:

1、已知a,bR,求证:ab4

ab

2、若x3,函数yx

13、若x0,求x的最值.x1,当x为何值时函数有最值,此时x是何值? x3

2x2x3x0的最大值,以及此时x的值.例

3、求函数fxx

x22x3x0的最小值及取得最小值时x的值.变式:求函数fxx

4、(1)一个矩形的面积为100m2,问这个矩形的长、宽各为多少时,矩形的周长最短?最短周长是多少?

(2)已知矩形的周长为36cm,问这个矩形的长、宽各为多少时,它的面积最大?最大面积是多少?

结论:(1)___________________________________________________

(2)___________________________________________________ 变式:已知直角三角形的面积为50,问两直角边各为多少时,它们的和最小?这个最小值是多少?

课堂小结:

课后练习:课本练习A、B

第三篇:分式不等式教案

2.3分式不等式的解法

上海市虹口高级中学

韩玺

一、教学内容分析

简单的分式不等式解法是高中数学不等式学习的一个基本内容.对一个不等式通过同解变形转化为熟悉的不等式是解不等式的一个重要方法.这两类不等式将在以后的数学学习中不断出现,所以需牢固掌握.二、教学目标设计

1、掌握简单的分式不等式的解法.2、体会化归、等价转换的数学思想方法.三、教学重点及难点

重点 简单的分式不等式的解法.难点 不等式的同解变形.四、教学过程设计

一、分式不等式的解法

1、引入

某地铁上,甲乙两人为了赶乘地铁,分别从楼梯和运行中的自动扶梯上楼(楼梯和自动扶梯长度相同),如果甲的上楼速度是乙的2倍,他俩同时上楼,且甲比乙早到楼上,问甲的速度至少是自动扶梯运行速度的几倍.设楼梯的长度为s,甲的速度为v,自动扶梯的运行速度为v0.于是甲上楼所需时间为

s,乙上楼所需时间为vsvv02.由题意,得ss.vvv02整理的12.v2v0v

由于此处速度为正值,因此上式可化为2v0v2v,即v2v0.所以,甲的速度应大于自动扶梯运行速度的2倍.2、分式不等式的解法 例1 解不等式:x12.3x2 1

解:(化分式不等式为一元一次不等式组)

5x1x1x1x12200 03x23x23x23x2x1x1x10x102x1或x不或或2233x203x20xx33存在.所以,原不等式的解集为22,1,即解集为,1.33注意到

x103x2x103x20或x103x2x10,可以简化上述解法.3x20另解:(利用两数的商与积同号(为一元二次不等式)

aa0ab0,0ab0)化bb5x1x1x1x12200 03x23x23x23x23x2x1022x1,所以,原不等式的解集为,1.33由例1我们可以得到分式不等式的求解通法:

(1)不要轻易去分母,可以移项通分,使得不等号的右边为零.(2)利用两数的商与积同号,化为一元二次不等式求解.一般地,分式不等式分为两类:

fx(1); 0(0)fxgx0(0)gx(2)

fxfxgx00.0(0)gxgx0 2

[说明]

解不等式中的每一步往往要求“等价”,即同解变形,否则所得的解集或“增”或“漏”.由于不等式的解集常为无限集,所以很难像解无理方程那样,对解进行检验,因此同解变形就显得尤为重要.例2 解下列不等式

x10.x523.(2)35xx82.(3)2x2x3x10x1x501x5,解(1)原不等式x5(1)所以,原不等式的解集为1,5.(2)原不等式215x715x73000 35x35x5x315x75x305x3037x155x3573x,155所以,原不等式的解集为73,1552.2(3)分母:x2x3x1110,则

原不2等式x822xxx23x4x 2x226x2或x1,2,.21,所以,原不等式的解集为2 3

例3 当m为何值时,关于x的不等式mx13x2的解是(1)正数?

(2)是负数?

解:mx13x2 m3xm6(*)当m3时,(*)0x9x不存在.当m3时,(*)x(1)原

m6.m3方

程的解

数x(m60(mm3)原

m6程

)m6或m3.的解

数2xm60(mm3m6)6m3.所以,当m,63,时,原方程的解为正数.当m6,3时,原方程的解为负数.四、作业布置

选用练习2.3(1)(2)、习题2.3中的部分练习.五、课后反思

解分式不等式关键在于同解变形.通过同解变形将其转化为熟悉的不等式来加以解决,这种通过等价变形变“未知”为“已知”的解决问题的方法是教学的重点也是难点,需在课堂教学中有所强调.整个教学内容需让学生共同参与,特别是在“同解变形”这一点上,应在学生思考、讨论的基础上教师、学生共同进行归纳小结.

第四篇:基本不等式教案

基本不等式

【教学目标】

1、掌握基本不等式,能正确应用基本不等式的方法解决最值问题

2、用易错问题引入要研究的课题,通过实践让同学对基本不等式应用的二个条件有进一步的理解

3、会应用数形结合的数学思想研究问题 【教学重点难点】

教学重点: 基本不等式应用的条件和等号成立的条件 教学难点:基本不等式等号成立的条件 【教学过程】

一、设置情景,引发探究 问题一:x1有最小值吗? x2问题二:x31x322正确吗?

二、合作交流,研究课题

R中,a+b≥2ab,a+b≥2ab,当且仅当a=b时取到等号。22

22a2b2ab2 R中,当且仅当a=b时取到等号。ab,1122ab注意:

1、公式应用的条件

2、等号成立的条件

三、实例分析,深化理解 例

1、求所给下列各式的最小值(1)ya 1(a3)a31(a3)3235,a3

1当且仅当a3a31a4时,ymin5。a3x22x2(1x1)(2)y2x2ya3(x1)21x11 y2(x1)22(x1)在(-1,0)上单调递减,在[0,1]上单调递增,当且仅当x11(1x1)x0时,y有最小值1。22(x1)11+的最小值.xy总结:想求和的最小值,乘积为定值

2、已知正数x、y满足x+2y=1,(1)求xy的最大值(2)求解:(1)1=x+2y22xy,∴xy

1; 8(2)∵x、y为正数,且x+2y=1,1111∴+=(x+2y)(+)xyxy2yx=3++≥3+22,xy当且仅当

22yx=,即当x=2-1,y=1-时等号成立.2xy∴11+的最小值为3+22.(目的:发现同学中的等号不成立的错解)xy总结:想求乘积的最大值,和为定值

四、总结提高,明确要点

五、布置作业,复习巩固

教学反思:加强利用均值不等式及其他方法求最值的练习,在求最大(小)值时,有三个问题必须注意:第一,注意不等式成立的充分条件,即x>0,y>0(x+y≥2xy);第二,注意一定要出现积为定值或和为定值;第三,要注意等号成立的条件,若等号不成立,利用均值不等式x+y≥2xy不能求出最大(小)值.

第五篇:绝对值不等式教案

绝对值不等式的解法

教学目标:

1.理解并掌握axbc与axbc(c0)型不等式的解法,并能初步地应用它解决问题。

2.培养数形结合的能力,培养通过换元转化的思想方法,培养抽象思维的能力;

3.激发学习数学的热情,培养勇于探索的精神,勇于创新

精神,同时体会事物之间普遍联系的辩证思想。

重点:xa与xa(a0)型不等式的解法。

难点:绝对值意义的应用,和应用xa与xa(a0)型不等式 的解法解决axbc与axbc(c0)型不等式。过程:

实数的绝对值是如何定义的?几何意义是什么? a,a0 绝对值的定义: | a | = 0,a0

a,a0 |a|的几何意义:数轴上表示数a的点离开原点的距离。|x-a|(a≥0)的几何意义是x在数轴上的对应点a的对应点之

间的距离。

实例:按商品质量规定,商店出售的标明500g的袋 装食盐,其实际数与所标数相差不能超过5g,设实际数是xg,那么,x应满足什么关系?能不能用绝对值来表示?

x5005,(由绝对值的意义,也可以表示成500x5.x5005.)

意图:体会知识源于实践又服务于实践,从而激发学习热情。

引出课题 新课

1.xa(a0)与xa(a0)型的不等式的解法。先看含绝对值的方程|x|=2 几何意义:数轴上表示数x的点离开原点的距离等于2.∴x=⊥2 提问:x2与x2的几何意义是什么?表示在数轴上应该是怎样的?

数轴上表示数x的点离开原点的距离小(大)于2-2O2x-2O2x

即 不等式 x2的解集是x2x2

不等式 x2 的解集是xx2,或x2.类似地,不等式xa(a0)|与xa(a0)的几何意义是什么?解集又是什么?

即 不等式xa(a0)的解集是xaxa;不等式xa(a0)的解集是xxa,或xa 小结:①解法:利用绝对值几何意义 ②数形结合思想 2.axbc,与axbc(c0)型的不等式的解法。

把 axb 看作一个整体时,可化为xa(a0)与

xa(a0)型的不等式 来求解。

即 不等式axbc(c0)的解集为

x|caxbc(c0);不等式axbc(c0)的解集为

x|axbc,或axbc(c0)例题

例1:解不等式x5005.解:由原不等式可得5x5005, 各加上500,得495x505, ∴原不等式的解集是x495x505.例2:解不等式2x57.解:由原不等式可得2x57,或2x57.整理,得x6,或x1.∴原不等式的解集是xx6,或x1.练习:P52 1、2(1),(2)3(1)(2)小结

1.xa与xa(a0)型不等式axbc与

axbc(c0)型不等式的解法与解集;

2.数形结合、换元、转化的数学思想 作业P52 1、2(3),(4)3(3)(4)思考题 P52 4

下载不等式教案word格式文档
下载不等式教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    均值不等式教案★

    3.2均值不等式 教案(3)(第三课时)教学目标:了解均值不等式在证明不等式中的简单应用教学重点:了解均值不等式在证明不等式中的简单应用教学过程例1、已知a、b、c∈R,求证:不等式的左......

    不等式的性质教案

    【教学重点与难点】 教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3. 教学难点:正确应用不等式的三条基本性质进行不等式变形. 【教学目标】 1、 探索并掌握不等式......

    不等式的性质 教案

    不等式的性质 教材分析 这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质.这部分内容是不等式变形、化简、证明的理论依据及基础.教材通过具体实例,让学......

    3.1认识不等式教案

    《3.1认识不等式》教案 教学目标 1、知识与技能:能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式;正确理解“非负数”、“不小于”等数学术语. 2、过程......

    不等式的性质教案

    不等式性质教案西南大学2010级4班 孙丹 【课标要求】1.不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系;2不等式的性质了解不等式的性质,并会用其证明不......

    不等式的证明教案

    不等式的证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通......

    一元二次不等式教案

    §2.2.4一元二次不等式 【授课班级】10级微机化工班 【授 课 人】相福香 【授课时间】2011年1月11日 一、教学目标 1.知识目标: (1)使学生了解一元二次不等式的概念; (2)使学生掌......

    一次不等式复习教案

    《一次不等式与一次不等式组》复习教学设计 审核:九年级数学组 目标确定的依据: 课标要求: ⑴结合具体问题,了解不等式的意义,探索不等式的基本性质。 ⑵能解数字系数的一元一次......