第一篇:一次不等式复习教案
《一次不等式与一次不等式组》复习教学设计
审核:九年级数学组
目标确定的依据: 课标要求:
⑴结合具体问题,了解不等式的意义,探索不等式的基本性质。
⑵能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
⑶能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。中招考点分析:
⑴不等式的性质。
⑵一元一次不等式(组)的解法及解集表示。⑶一元一次不等式的实际应用。学情分析:
本节复习不等式,学生基本熟悉却欠缺灵活,没有真正用数学符号表示实际问题,培养解决问题的能力。复习目标:
(1)了解不等式的性质,会进行一元一次不等式(组)的解法及解集的运算。(2)解与一元一次不等式(组)有关的实际应用问题。评价任务;通过基础知识回顾达成目标一; 通过练习反馈和直击中考达成目标二。复习过程:
一、基础知识回顾: 1.有关概念:
①一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
②能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.③ 求不等式解集的过程叫解不等式.④由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
⑤不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。2.不等式的基本的性质: 性质1.性质2: 性质3:
不等式的其他性质:传递性:若a>b,且b>c,则a>c 3.解不等式的步骤:
1、去分母;
2、去括号;
3、移项合并同类项;
4、系数化为1。4.解不等式组的步骤:
1、解出不等式的解集
2、在同一数轴表示不等式的解集。5.列一元一次不等式组解实际问题的一般步骤:
(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
二、常考题型:
命题点1 解不等式(组)及其解集表示
1.(南昌)将不等式3x-2<1的解集表示在数轴上,2.(怀化)不等式3(x-1)≤5-x的非负整数解有()A.1个 B.2个 C.3个 D.4个
3.(天津8分)解不等式组x+2≤6 ①3x-2≥2x ②.请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得____________;(Ⅱ)解不等式②,得____________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为____________.
命题点2 一次不等式的实际应用
1.(东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()命题点3 方程与不等式的实际应用
1.(衢州6分)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度.已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;
(2)已知该家庭每月平均用电量为150度.若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).
三、练习反馈:
1.不等式组2x+2>x3x<x+2的解集是()A.x>-2 B.x<1 C.-1<x<2 D.-2<x<1 2.(2016聊城)不等式组x+5<5x+1x-m>1的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0 3.(西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块 B.104块 C.105块 D.106块
四、直击中考 河南近8年考题《试题研究》。1.做《试题研究》练习2.错题矫正
五、板书设计:
一次不等式与一次不等式组复习
1.基础知识回顾概念;2.不等式的基本的性质: 3.练习运算: 4.演板:
课后反思:
第二篇:一元一次不等式教案
一元一次不等式教学设计
教学目标: 1 掌握一元一次不等式的解法,能熟练的解一元一次不等式 在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。教学重点: 掌握解一元一次不等式的步骤. 教学难点: 必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:
一、问题导入,提出目标
1导入:请同学们思考两个问题: 一是不等式的基本性质有哪些?
二是什么是一元一次方程?并举出两个例子。
解一元一次方程:1-2x =x + 3,目的是为了与解例1进行类比,找到它们的联系与区别。
2、出示学习目标,检验学生预习
(1)能说出一元一次不等式的定义。
(2)会解答一元一次不等式,并能把解集在数轴上表示出来。
二、指导自学,小组合作
请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14
什么叫做一元一次不等式。
2、(1)自己举出2或3个一元一次不等式的例子,小组交流。(2)下列不等式中,哪些是一元一次不等式? 3x+2>x–1 5x+3<0 +3<5x–1(4)x(x–1)<2x
3、通过自学例1:
解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
4(x-1)+2> 3(x+2)-x(x-2)/ 2≥(7-x)/ 3
6、总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
1、交流导学提纲中的1—6题。
学生易出错的问题和注意的事项:
(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
(3)不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨例2和例3,学生到黑板上板演。
(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。
(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1
四、当堂训练,达标检测
巩固练习题目
当堂检测题
1.下列各式是一元一次不等式的是()A.21>1 B.2x>1 C.2x2≠1 D.2< xx1x+3>-5是一元一次不等式()21>-8不是一元一次不等式()x2.判断正误:(1)(2)x+2y≤0是一元一次不等式()(3)3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.
4.如果a与12的差小于a的9倍与8的和,则a的取值范围是_______. 5.解下列不等式:
(1)(x-3)≥2(x-4)(2)
(3)(1-2x)>10-5(4x-3)(4)1<x
48x≥0 5x10 2
第三篇:八年级数学一元一次不等式复习课教案
八年级数学一元一次不等式复习课教案
教材分析
不等式在我们身边处处存在,如:年龄的大小,个子的高矮,身体的轻重,倾斜的天平,速度的快慢,路程的远近等等都表现为不等的关系。不等式在日常生活、工农业生产、城市规划乃至国防等领域都有广泛的应用,我们学习不等式后,知道同样得遵守许多规则、操作起来同样得有根有据,甚至还得更小心谨慎一些。同时,它也是学习数学乃至物理、化学等其他学科的知识的一个重要基础。
知识与技能目标
1.会运用不等式的基本性质解一元一次不等式(组),并会借助数轴确定不等式(组)的解集。
2.会根据题中的不等关系建立不等式(组),解决实际应用问题。
过程与分析目标
1.学会分析现实问题的不等关系,提炼有关的不等式(组)来解决问题。
2.允许学生暴露在解不等式时易犯或常犯的错误,以便有针对性地解决问题。
情感与态度目标
1.本单元主要让学生领会数形结合的解题思想。
2.提高运用不等式有关知识解决实际问题的能力。
重点难点
灵活运用所学知识分析解决现实生活的实际问题。
教学流程
教师:学完本章后,相信已经学会了用数学的角度观察思考解决问题的方法了,为了更好地有效地解决实际问题,现在我们做练习。
第一部分
(时间20分钟,分数30分)
一、填空
1、不等式x-2<3的解集是。
2、不等式x-2≤3x+5的负整数解有。
-x≤1,3、不等式组的解集是。
x-2<3
>1
4、已知不等式组的解集为x>2,则a的取值范围是。
x>a
二、选择题
1.下列不等式是一元一次不等式的是()。
(A)2(1-y)>4y+2
(B)x(2-x)≥l
(c)+ >
(D)x+l 2.不等式 •x<0的解集是()。 (A)x>2 (B)x>-2 (C)x<-2 (D)x<2 3.不等式2x-2≥3x-4的正整数解的个数为()。 (A)1个 (B)2个 (C)3个 (D)4个,4.在不等式 > 的变形过程中,出现错误的步骤是()。 (A)5(2+x)>3(2x-1)(B)10+5x>6x-3(C)5x-6x>-3-10 (D)x>13 三、解答题(本大题共14分) 1.解下列不等式(组)并把它们的解集在数轴上表示出来(每小题5分,共10分) (1)≤ (2)-2x+1>-11 -1≥x 2.x取哪些整数值时,代数式 与 的差大于6且小于8?(本题4分) 第二部分 (时间20分钟,分数30分) 一、填表并列出不等式:(本题共10分) 1.某采石场爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移到400米以外的安全区域;导火线燃烧速度是1厘米/秒,人离开的速度是5米/秒,导火线至少需要多长? 导火线燃烧 人离开 速度(厘米/秒) 长度(厘米) 时间(秒) 并列出不等式为。 2.用每分钟抽水30吨的抽水机来抽污水管道里积存的污水,估计积存的污水在1200到1500吨之间,那么大约要用多少时间才能将污水抽完? 最少 中间 最多 每分钟抽水(吨) 污水(吨) 时间范围(分钟) 并列出不等式为。 二.阅读下列题并填空和解答(本题20分) 1.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。 解:设宿舍有x间,则住宿生人数为 人,由题意可知,每间住8人,则 间是住满的,而最后一间不空也不满,所以住宿生人数大于8(x—1),而小于8x,于是得不等式组 解得 故该班有住宿生 人,宿舍 间。 2.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带均按定价的90%付款.某商店老板现要到该服装厂购买西装20套,领带x(x>20)条。请你根据x的不同情况,帮助商店老板选择最省钱的购买方案。 解:按优惠方案①购买,应付款 =40x+3200(元); 按优惠方案②购买,应付款 =36x+3600(元)。 设y=(40x+3200)—(36x+3600)=(4x—400)(元) 当y 比方案 省钱; 当 即 时,选方案 比方案 省钱; 当 即 时,选方案 比方案 省钱。 如果同时选择方案①与方案②,那么为了获得厂方赠送领带的数量最多,同时享受九折优惠,可综合设计方案③; 先按方案①购买20套西装并获赠送的20条领带,然后余下的(x—20)条领带按优惠方案②购买,应付款 =(36x+3280)(元)。 方案③与方案②比较,显然方案③省钱。 方案③与方案①比较,当36x+3280<40十3200时,解得x>20. 即当x>20时,方案③比方案①省钱。 综上所述,当x>20,方案 购买最省钱。 第三部分 (时间40分钟,分数40分) 解答下列各题:(1,2题任选一题,10分,3,4题任选一题,10分,5题20分) 1.某校师生要去外地参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择:第一种方案是教师按原价付款,学生则按原价的78%付款;第二种方案是师生都按原价的80%付款。该校有5名教师参加这项活动,试根据参加夏令营的学生人数,选择购票付款的最佳方案。 2,某文具用品店出售羽毛球拍和羽毛球,球拍每付定价20元,羽毛球每只定价5元,该店制定了两种优惠办法: (1)买一付球拍赠送一只羽毛球; (2)按总价的92%付款。 某班级需购球拍4付、羽毛球x只(x>4),总付款额为y(元),试分别建立两种优惠办法中y与x间的关系式: ① ② (3)试讨论若购买同样多的羽毛球,两种优惠办法中哪一种更省钱? 3.某班学生42人去公园划船,大船每船可乘坐5人,租金每船每小时15元,小船每船可乘坐3人,租金每船每小时10元.若每条船都坐满,全班同学都能参加划船,问有几种租船方案,哪种方案花钱最少? 4.通过电脑拨号上“因特网”的费有由电话费和上网费两部分组成。某市通过“市民热线”上“因特网”的费用为电话费0.18元/3分钟,上网费7.2元/时,后根据信息产业调整“因特网”资费的要求,自1999年3月1日起,某市上“因特网”的费用调整为电话费0.22元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时,按8元/小时计算。 (1)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出。“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时? (2)从资费调整前后的角度分析,比较某市网民上网费用的支出情况。 5.烟台大樱桃闻名全国,今年又喜获丰收,某大型超市从樱桃生产基地购进一批大樱桃,运输过程中质量损失5%(超市不负责其他费用) (1)如果超市把售价在进价的基础上提高5%,超市是否亏本?通过计算说明。 (2)如果超市获得至少20%的利润,那么大樱桃售价最低应提高百分之几?(结果精确到0.1%) 教学反思 注意让学生学习知识的牢固掌握,设置一些有层次性的小练习,学会用数学的思想来分析解决现实情境问题;注意提供学生观察现实生活的机会,让他们要善于积累日常生活中的常识。 一元一次不等式组教案 教学目标: 1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法; 2、经历知识的拓展过程,感受学习一元一次不等式的必要性; 3、逐步熟悉数形结合的思想方法,感受类比和化归思想。 4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。 5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点: 重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程: 呈现目标 目标一:创设情景,引出新知 (教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求? (教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨 数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1 2x+3≥x+11 -1<2-x 目标三:归纳总结 反馈矫正 解下列不等式组(1) 3x-15>0 7x-2<8x(2) 3x-1 ≤x-2-3x+4>x-2 (3) 5x-4≤2x+5 7+2x≤6+3x (4) 1-2x>4-x 3x-4>3 归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4 x>4 x<4 x>4 X<2 x>2 x>2 x<2 X<2 x>4 2<x<4 无解 教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高 知识拓展 《完全解读》第230页 已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。 探究合作 小组学习:各学习小组围绕目标 一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚; 教师引导:(1)什么是不等式组? (2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的? 展示点评 分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。 教师点评:教师推荐解不等式组口决。 巩固提高 教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。 一元一次不等式的应用题 教学目标:会解一元一次不等式的应用题。 教学重点:一元一次不等式应用题与一元一次方程既有联系又有区别,注意 对比它们的异同点,以便加深对一元一次不等式知识的理解和记忆。 教学难点:解决实际问题时,除认真做好列不等式解应用题的“审、设、找、列、解 ”五步 骤外,完成第六步“答”确定其解集(特别 是特解)时,应充分挖掘实际问题的隐含条件。思想品德教育:让学生进一步学习和体会“转化”思想在解题中的应用。教学过程: 一、复习: 某次“人与自然”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错或不答扣5分,必须答对几道题,才能得80分? 二、引入: 1、用不等式表示下列数量关系。(1)a是比6小的数;(2)x的4倍与7的差大于3;(3)a的2倍的相反数不大于0;(4)x与8的差的不小于0; 2、先设未知数,再用不等式表示下列关系(1)某天的气温不低于8°C; (2)初一(2)班的男生不少于25人; (3)汽车在行驶过程中,速度一般不超过80千米/小时;(4)他至少应该答对30道题 三、出示例题 某次“人与自然”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错或不答扣5分,至少要答对几道题,其得分不少于80分? 四、练习 (1)一个工程队原定10天内至少要挖掘600m3的土方,在前两天共完成了120m3后,又要求提前2天完成挖掘土任务,问以后几天内,平均每天至少要挖掘多少土方? (2)小明家平均每月付电话费28元以上,其中月租费22.88 元,已知市内通话不超过3分钟,每次话费0.18元,如果小明家的市内通话时间都不超过3分钟,问小明平均每月通话至少多少次?(讨论) (3)有人问一位老师:他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足六位同学在操场踢足球,”试问这个班共有多少学生?(讨论) 课后小结: 在教学过程中,教学重点、难点明确,注重从学生的认知规律出发,由浅入深,循序渐进,在选题时注意学生的生活实际,举身边实例。在课堂上,经常用鼓励的语言,调动学生们的积极性。第四篇:一元一次不等式组教案
第五篇:一元一次不等式应用题教案