第一篇:《不等式与不等式组》复习教案
《不等式与一次不等式组》 全章复习与巩固(提高)知识讲解
要点
一、不等式
1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子要点诠释:
(1)不等式的解:能使不等式成立的未知数的值
(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集. 解集的表示方法一般有两种:
1、用最简的不等式表示,例如xa,xa等;
2、是用数轴表示,如下图所示:
(3)解不等式:求不等式的解集的过程
2.不等式的性质:
基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.
用式子表示:
如果a>b,那么a±c>b±c 基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
用式子表示:
ab如果a>b,c>0,那么ac>bc(或).
cc 基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
用式子表示:
ab如果a>b,c<0,那么ac<bc(或).
cc要点二、一元一次不等式
1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1 要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式. 2.解法:
解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
要点诠释:不等式解集的表示:在数轴上表示不等式的解集,注意的是“三定”:
一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:
(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;
(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”
“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;
(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:
列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组
一元一次不等式组:关于同一未知数的几个一元一次不等式合在一起。要点诠释:
(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等
式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取
所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:
①根据题意构建不等式组,解这个不等式组; ②由不等式组的解集及实际意义确定问题的答案.
【典型例题】
1.若x是非负数,则用不等式可以表示为()A.x>0
B.x≥0
C.x<0
D.x≤0 解析:x为非负数,即x是正数或零,即x>0或x=0.答案:B 2.亮亮在“联华超市”买了一个三轮车外轮胎,看见上面标有“限载280 kg”的字样,由此可判教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
断出该三轮车装载货物重量x的取值范围是()A.x<280 kg
B.x=280 kg
C.x≤280 kg
D.x≥280 kg 解析:“限载280 kg”是指最大载重量为280 kg,即不能超过280 kg.答案:C 3.如图9-1-1,则x____________80.图9-1-1 解析:因为左边比右边重,所以x>80.答案:>
4.不等式的两边加上或减去同一个数(或式子),不等号的方向_____________;不等式的两边同时乘以或除以同一个_____________,不等号的方向不变; 不等式的两边同时乘以或除以同一个_____________,不等号的方向改变.答案:不变
正数
负数
10分钟训练(强化类训练,可用于课中)1.下面的式子中不等式有_____________个.()①3>0 ②4x+3y>0 ③x=3 ④x-1 ⑤x+2≤5
A.2
B.3
C.4
D.5 解析:用符号“>”“≠”“≥”“<”“≤”连接的式子叫不等式,所以①②⑤是不等式.答案:B 2.无论x取何值,下列不等式总成立的是()A.x+5>0
B.x+5<0 C.-(x+5)2<0
D.(x+5)2≥0 解析:根据任意数的平方都是非负数,所以(x+5)2≥0.答案:D 3.由a>b,得到ma<mb,则m的取值范围是()A.m>0
B.m<0
C.m≥0
D.m≤0
解析:根据“不等式的两边同时乘以或除以同一个负数,不等号的方向改变”,得m<0.答案:B 4.用不等式表示“长为a+b,宽为a的长方形面积小于边长为3a-1的正方形的面积”: _________.解析:长方形的面积=长×宽,正方形的面积=边长×边长.答案:a(a+b)<(3a-1)2 5.3x2n-7-3>n1是关于x的一元一次不等式,则n=_____________.2解析:根据一元一次不等式的定义可得2n-7=1,所以n=4.答案:4 6.利用不等式的性质求下列不等式的解集,并在数轴上表示出来.(1)x-3<2;(2)11x>;(3)5x≥3x-2.24解:解关于x的不等式,就是利用不等式的性质将不等式逐步化为x<a或x>a的形式.(1)不等式两边加3,得x<5;(2)不等式两边乘以-4,得x<-2;(3)不等式两边减3x,得5x-3x≥-2,教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
即2x≥-2;不等式两边除以2,得x≥-1.在数轴上表示不等式的解集要分清两点,一要分清实点和虚点(“≥”与“≤”用实点,“>”与“<”用虚点),二要分清方向(“≥”与“>”向右,“≤”与“<”向左).如图.7.若x<0,x+y>0,请用“<”将-x,x,y,-y连接起来.解:由x<0,x+y>0,可知y>0,且|y|>|x|,所以-x>0,-y<0.根据“两个负数,绝对值大的反而小”知-y<x,所以-y<x<-x<y.30分钟训练(巩固类训练,可用于课后)1.(2010吉林长春模拟,3)如图9-1-2所示,在数轴上表示不等式2x-6≥0的解集,正确的是()
图9-1-2 答案:B 2.设“”“”“”表示三种不同的物体,现用天平称了两次,情况如图9-1-3所示,那么、、这三种物体按质量从大到小的顺序排列应为()
图9-1-3 A.、、B.、、C.、、D.、、答案:B 3.(2010浙江绍兴模拟,7)不等式2-x>1的解集是()A.x>1
B.x<1
C.x>-1
D.x<-1 答案:B 4.已知△ABC中,a>b,那么其周长P应满足的不等关系是()A.3b<P<3a
B.a+2b<P<2a+b C.2b<P<2(a+b)
D.2a<P<2(a+b)答案:D 5.如图9-1-4,有理数a、b在数轴上的位置如图9-1-4所示,则或“<”).图9-1-4 答案:<
6.一个木工有两根长为40 cm和60 cm的木条,要另外找一根木条并钉成一个三角形木架,问第三根木条的长度x的取值范围是_________________厘米.答案:20<x<100 教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
ab_________0(填“>”ab
7.用适当的符号表示下列关系:(1)a的3倍与b的1的和不大于3;5(2)x2是非负数;(3)x的相反数与1的差不小于2;(4)x与17的和比它的5倍小.解:(1)中不大于就是小于或等于,即“≤”;(2)中的非负数就是大于等于零,即“≥”;(3)不小于就是大于等于;(4)中关键词是“小”等.可得(1)3a+
1b≤3;5(2)x2≥0;(3)-x-1≥2;(4)x+17<5x.8.请写出一个含有“≤”的不等式的题目,并列出该题的不等式,能求出解集的求其解集.解:x的2倍与3与x差的和不大于7.列出不等式为2x+(3-x)≤7;2x+3-x≤7,x+3≤7,x≤4.9.你能比较2 0052010与2 006的大小吗? 为了解决这个问题,我们可先探索形如:n(n+1)和(n+1)n的大小关系(n≥1,自然数).为了探索其规律可从n=1、2、3、4、„这些简单的情形入手,从中观察、比较、猜想、归纳并得出结论.(1)利用计算器比较下列各组中两个数的大小:(填“<”“>”)
①12____________21;②23____________32;③34____________43;④45____________54;⑤56____________65.(2)试归纳出nn+1与(n+1)n的大小关系是:______________.(3)运用归纳出的结论,试比较2 0052010与2 006的大小.解:(1)通过计算可得<
<
>
>
>(2)经过观察、比较、猜想可归纳出, 当n=1,2时,nn+1<(n+1)n; 当n>3时,nn+1>(n+1)n.(3)根据规律,当n>3时,nn+1>(n+1)n,得0052 006>2 0062 005.10.某辆救护车向相距120千米的地震灾区运送药品需要1小时送到,前半小时已经走了50
千米,后半小时至少以多大的速度前进,才能保证及时送到? 解:设后半小时速度为x千米/时, 依题意,有1x+50≥120.21x≥70,x≥140.2故后半小时至少以140千米/时的速度前进才能保证及时送到.11.小明和小亮决定把省下的零用钱存起来,已知小明存了168元,小亮存了85元,从这个月开始小明每月存16元,小亮每月存25元,几个月后小亮的存款数能超过小明? 解:设x个月后小亮的存款数能超过小明,则第x个月后小明的存款数为(16x+168)元,小亮的存款数是(25x+85)元.所以由题意可得25x+85>16x+168,25x-16x>168-85,即9x>81,得x>9.故9个月后小亮的存款数能超过小明.教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
12.两根长度均为a cm的绳子,分别围成一个正方形和一个圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长a应满足怎样的关系式?(2)如果要使圆的面积大于100 cm2,那么绳长a应满足怎样的关系式?(3)当a=8时,正方形和圆的面积哪个大?a=12呢?(4)你能得到什么猜想?改变a的取值再试一试.解:这是一个等周问题,所围成的正方形面积可表示为(a2a2),圆的面积可表示为π().42a2a2(1)要使正方形的面积不大于25 cm,就是()≤25,即≤25.4162
a2a2(2)要使圆的面积大于100 cm,就是π()>100,即>100.242
82822(3)当a=8时,正方形的面积为=4(cm),圆的面积为≈5.1(cm2),4<5.1,此时圆的面积大;
4161221222当a=12时,正方形的面积为=9(cm),圆的面积为≈11.5(cm2).1649<11.5,此时还是圆的面积大.a2a2(4)周长相同的正方形和圆,圆的面积大.本题中即>.164
教师寄语: 没有付出,那来收获 没有努力,何来成绩
心态不改变,成绩怎会变 坚持才会成功
第二篇:不等式与不等式组教案
以下是查字典数学网为您推荐的不等式与不等式组教案,希望本篇文章对您学习有所帮助。不等式与不等式组本章知识是在学习了一元一次方程(组)的基础上研究简单的不等关系的.教材首先通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集及解不等式的概念,然后具体研究了一元一次不等式的解、解集、一元一次不等式的解法以及一元一次不等式的简单应用等.通过具体实例渗透一元一次不等式与一元一次方程的内在联系.最后研究一元一次不等式组的解、解集、一元一次不等式组的解法以及一元一次不等式组的简单应用等.小结2 本章学习重难点【本章重点】能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质.会解简单的一元一次不等式,能在数轴上表示出不等式的解集,会解一元一次不等式组,并会用数轴确定其解集.能够根据具体问题中的不等关系,列出一元一次不等式或一元一次不等式组解决简单的问题.【本章难点】能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质;会解简单的一元一次不等式,并能在数轴上表示出解集,会解由两个一元一次不等式组成的不等式组,并用数轴确定解集.能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组解决简单的实际问题.小结3 中考透视本章内容在中考中所占比重较大,直接考查不等式的基本性质.一元一次不等式(组)的解法,在数轴上表示不等式(组)的解集;间接考查将不等式(组)应用于二次根式、绝对值的化简与求值讨论、一元二次方程根的情况及求函数自变量的取值范围.以填空、选择形式为主,计算题形式也不少,其中应用不等式知识进行方案设计及比赛分析题目难度较大,不易得分.知识网络结构图专题总结及应用
一、知识性专题专题1 不等式(组)的实际应用【专题解读】利用不等式(组)解决实际问题的步骤与列一元一次不等式解应用题的步骤类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可.在列不等式(组)时,审题是基础,根据不等关系列出不等式组是关键.解出不等式组的解集后,要养成检验不等式的解集是否合理,是否符合实际情况的习惯.即审题设一个未知数找出题中所有的数量关系,列出不等式组解不等式组检验.例1 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题.(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.解:(1)由题意知购买B种船票(15-x)张.根据题意,得解得因为x为正整数,所以满足条件的x为5或6.所以共有两种购票方案.方案一:购买A种票5张,B种票10张.方案二:购买A种票6张,B种票9张.(2)方案一的购票费用为6005+12010=4200(元);方案二的购票费用为6006+1209=4680(元).因为4500元4680元,所以方案一更省钱.【解题策略】运用不等式知识解决实际问题,关键是把实际问题的文字语言转化为数学符号语言.二、规律方法专题专题2 求一元一次不等式(组)的特殊值【专题解读】在此类问题中,一般给出一个一元一次不等式(组),然后在解集的范围内限制取值,解决的方法通常是先求出不等式(组)的解集,再由题意求出符合条件的数值.例2 求不等式 的非负整数解.分析 先解不等式,求出x的取值范围,在x的取值范围内找出非负整数解,求非负整数解时注意不要漏解.解:解不等式 ,得x5.所以不等式的非负整数解是5,4,3,2,1,0.【解题策略】此题不能忽略0的答案.专题3 一元一次不等式(组)中求参数的技巧【专题解读】由已知不等式(组)的解集或整数解来确定选定系数的值或待定系数的取值范围,常用的方法是先用解不等式(组)的方法解出含待定系数的不等式(组)的解集,再代入已给出的条件中,即可求出待定系数的值.例3 已知关于x的不等式组 的整数解共有3个,则b的取值范围是______.分析 化简不等式组,得 如图9-59所示,将其表示在数轴上,其整数解有3个,即为x=5,6,7.由图可知78.故填78.例4 已知关于x的不等式(2-a)x3的解集为 ,则a的取值范围是()A.a0B.a2C.a0D.a2分析 分析题中不等式解集的特点,结合不等式的性质3,可知2-a0,即a2.故选B.三、思想方法专题专题4 数形结合思想【专题解读】在解有关不等式的问题时,有些问题需要我们借助图形来给出解答.解决此类问题时,要充分利用图形反馈的信息,或将文字信息反馈到图形上,做到有数思形,有形思数,顺利解决问题.例5 关于x的不等式2x-a-1的解集如图9-60所示,则a的取值是()A.0B.-3C.-2D.-1分析 由图9-60可以看出,不等式的解集为x-1,而由不等式2x-a-1,解得x ,所以 =-1,解这个方程,得a=-1.故选D.专题5 分类讨论思想【专题解读】在利用不等式(组)解决实际问题中的方案选择、优化设计以及最大利润等问题时,为了防止漏解和便于比较,我们常常用到分类讨论思想对方案的优劣进行探讨.例6某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助学校选出最省钱的一种租车方案.分析 本题考查利用不等式组设计方案并做出决策的问题.根据题中的不等关系可列出不等式组,解不等式组求出x的取值,从而解答本题.解:(1)设租用甲种汽车x辆,则租用乙种汽车(8-x)辆.根据题意得 解得56.因为x为整数,所以x=5或x=6.故有两种租车方案,方案一:租用甲种汽车5辆、乙种汽车3辆.方案
二、租用甲种汽车6辆、乙种汽车2辆.(2)方案一的费用:52000+31800=15400(元).方案二的费用:62000+21800=15600(元).因为15400元15600元,所以方案一最省钱.答:第一种租车方案更节省费用,即租用甲种汽车5辆、乙种汽车3辆.【解题策略】解答设计方案的问题时,要注意不等式组的解集必须符合实际问题的要求,不能把数学问题与实际问题相混淆.2011中考真题精选
一、选择题1.(2011江苏无锡,2,3分)若ab,则()A.a﹣b B.a﹣b C.﹣2a﹣2b D.﹣2a﹣2b考点:不等式的性质。专题:应用题。分析:由于a、b的取值范围不确定,故可考虑利用特例来说明,若能直接利用不等式性质的就用不等式性质.解答:解:由于a、b的 取值范围不确定,故可考虑利用特例来说明,A、例如a=0,b=﹣1,a﹣b,故此选项错误,B、例如a=1,b=0,a﹣b,故此选项错误,C、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a﹣2b,故此选项错误,D、利用不等式性质3,同乘以﹣2,不等号改变,则有﹣2a﹣2b,故此选项正确,2.(2011南昌,7,3分)不等式8﹣2x0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.解答:解:移项得,﹣2x﹣8,系数化为1得,x4.在数轴上表示为:3.(2011山东日照,6,3分)若不等式2x4的解都能使关于x的一次不等式(a﹣1)xA.1考点:解一元一次不等式组;不等式的性质。专题:计算题。分析:求出不等式2x4的解,求出不等式(a﹣1)x解答:解:解不等式2x4得:x2,4.如果ab,c0,那么下列不等式成立的是()A、a+cb+c B、c-ac-b C、acbc D、考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵ab,a+cb+c,故此选项正确;B,∵ab,-a-b,-a+c-b+c,故此选项错误;C,∵ab,c0,ac故此选项错误;5.(2011四川凉山,2,4分)下列不等式变形正确的是()A.由,得 B.由,得-2a-2bC.由,得 D.由,得考点:不等式的性质.分析:根据不等式的基本性质分别进行判定即可得出答案.解答:解:A.由ab,得acbc,当c0,不等号的方向改变.故此选项错误;B.由ab,得-2a-2b,不等式两边乘以同一个负数,不等号的方向改变,故此选项正确;C.由ab,得-a-b,不等式两边乘(或除以)同一个负数,不等号的方向改变;(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(2011台湾13,4分)解不等式﹣ x﹣32,得其解的范围为何()A、x﹣25 B、x﹣25C、x5 D、x5考点:解一元一次不等式。专题:计算题。分析:首先去掉不等式中的分母,然后移项,合并同类项即可求解.7.(2011台湾,18,4分)解不等式1-2x,得其解的范围为何()A.B.C.D.考点:解一元一次不等式。专题:计算题。分析:利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.解答:解:移项得,-2x+ x-1,(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.(2011湖北潜江,4,3分)某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集。专题:探究型。分析:先根据数轴上表示的不等式组的解集写出来,在对四个选项进行分析即可.解答:解:由数轴上不等式解集的表示法可知,此不等式组的解集为x3,A.不等式组的解集为x3,故本选项错误;B.不等式组的解集为x3,故本选项正确;9.(2011河池)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、考点:在数轴上表示不等式的解集。专题:计算题。分析:由图可得,x﹣1且x2,从而得出不等式的解集.10.(2011泰安,18,3分)不等式组 的最小整数解为()A.0 B.1 C.2 D.-1考点:一元一次不等式组的整数解。专题:计算题。分析:首先解不等式组求得不等式的解集,然后确定解集中的最小整数值即可.解答:解:解第一个不等式得:x解第二个不等式得:x-111.(2011年山东省威海市,11,3分)如果不等式组 的解集是x2,那么m的取值范围是()A、m=2 B、m2 C、m2 D、m2考点:解一元一次不等式组;不等式的解集.专题:计算题.分析:先解第一个不等式,再根据不等式组 的解集是x2,从而得出关于m的不等式,解不等式即可.解答:解:解第一个不等式得,x2,12.(2011山东淄博5,3分)若ab,则下列不等式成立的是()A.a﹣3考点:不等式的性质。分析:根据不等式的性质分别进行判断即可.解答:解:∵ab,a﹣3﹣2aab﹣1,13.(2011四川凉山2,3分)下列不等式变形正确的是()A.由,得 B.由,得-2a-2bC.由,得 D.由,得考点:不等式的性质.分析:根据不等式的基本性质分别进行判定即可得出答案.解答:解:A.由ab,得acbc,当c0,不等号的方向改变.故此选项错误;B.由ab,得-2a-2b,不等式两边乘以同一个负数,不等号的方向改变,故此选项正确;C.由ab,得-a-b,不等式两边乘(或除以)同一个负数,不等号的方向改变;(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.14.(2011福建莆田,3,4分)已知点P(a,a-1)在平面直角坐标系的第一象限,则a的取值范围在数轴上可表示为()考点:在数轴上表示不等式的解集;点的坐标.专题:计算题.分析:由点P(a,a-1)在平面直角坐标系的第一象限内,可得,分别解出其解集,然后,取其公共部分,找到正确选项;解答:解:∵点P(a,a-1)在平面直角坐标系的第一象限内,15.(2011福建福州,6,4分)不等式组 的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.16.2011广州,6,3分)若aA.abc0 B.abc=0 C.abc0 D.无法确定【考点】不等式的性质.【专题】计算题.【分析】根据不等式是性质:①不等式两边乘(或除以)同一个正数,不等号的方向不变.②不等式两边乘(或除以)同一个负数,不等号的方向改变,解答此题.【解答】解:∵aac0(不等式两边乘以同一个负数c,不等号的方向改变),abc0(不等式两边乘以同一个正数,不等号的方向不变).故选C.【点评】主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.(2011广东省茂名,1,3分)不等式组 的解集在数轴上正确表示的是()A、B、C、D、考点:在数轴上表示不等式的解集;解一元一次不等式组。专题:存在型。分析:分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来,找出符合条件的选项即可.解答:解:,由①得,x2,1.(2011广东深圳,9,3分)已知a,b,c均为实数,若ab,c0.下列结论不一定正确的是()A、a+cb+c B、c-aabb2考点:不等式的性质.专题:计算题.分析:根据不等式的性质1,不等式两边同时加上或减去同一个数,不等号的方向不变;根据不等式的性质2,不等式两边同时乘以或除以同一个正数,不等号的方向不变;根据不等式的性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变;利用不等式的3个性质进行分析.解答:解:A,根据不等式的性质一,不等式两边同时加上c,不等号的方向不变,故此选项正确;B,∵ab,-a-b,-a+c-b+c,故此选项正确;C,∵c0,c20,∵ab.,故此选项正确;D,∵ab,a不知正数还是负数,a2,与ab,的大小不能确定,故此选项错误;18.(2011广西来宾,8,3分)不等式组 的解集可表示为()A BC D考点:在数轴上表示不等式的解集;解一元一次不等式组。专题:计算题。分析:首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;19(2011杭州,9,3分)若a+b=-2,且a2b,则()A、ba有最小值 12 B、ba有最大值1C、ab有最大值2 D、ab有最小值-89考点:不等式的性质.专题:计算题.分析:由已知条件,根据不等式的性质求得b0和a然后根据不等式的基本性质求得 2 和②当a0时,有最大值是 ②当 0时,据此作出选择即可.解答:解:∵a+b=-2,a=-b-2,b=-2-a,又∵a2b,-b-22b,a-4-2a,移项,得-3b2,3a-4,b0(不等式的两边同时除以-3,不等号的方向发生改变);a由a2b,得 2(不等式的两边同时除以负数b,不等号的方向发生改变);A.当a0时,有最大值是,;故本选项错误;B.当 0时,有最小值是,无最大值;故本选项错误;C..有最大值2;故本选项正确;(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.20.(2011浙江台州,6,4分)不等式组 的解集是()A.x3 B.x6 C.36 D.x6考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.解答:解:,由①得:x6,由②得:x3,21.(2011梧州,8,3分)不等式组的解集在数轴上表示为如图,则原不等式组的解集为()A、x2 B、x3 C、x3 D、x2考点:在数轴上表示不等式的解集。专题:探究型。分析:根据数轴上不等式解集的表示方法进行解答即可.解答:解:∵由数轴上不等式解集的表示方法可知,不等式组中两不等式的解集分别为:x3,x2,22.(2011年湖南省湘潭市,3,3分)不等式组 的解集在数轴上表示为()A、B、C D、考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:存在型.分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可.23.(2011巴彦淖尔,4,3分)不等式组 的解集在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集;解一元一次不等式组。专题:计算题。分析:先解不等式组得到﹣2解答:解:解x+20得,x﹣2,二、填空题1.(2011柳州)不等式组 的解集是 1考点:解一元一次不等式组。分析:首先分别解两个不等式,再根据:大大取大,小小取小,大小小大取中,大大小小取不着,写出公共解集即可.解答:解:,由①得:x2,2.(2011郴州)不等式组 的解集是 1考点:解一元一次不等式组。分析:首先解不等式组中的每一个不等式,然后求出不等式组的解集即可.解答:解:,3.(2011四川眉山,18,3分)关于x的不等式3x﹣a0,只有两个正整数解,则a的取值范围是 69.考点:一元一次不等式的整数解。专题:计算题。分析:解不等式得x,由于只有两个正整数解,即1,2,故可判断 的取值范围,求出a的职权范围.解答:解:原不等式解得x,∵解集中只有两个正整数解,三、解答题1.(2011新疆建设兵团,16,6分)解不等式组5x-93(x-1)1-32x12x-1,并将解集在数轴上表示出来.考点:解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解: 5x-93(x-1)①1-32x12x-1②,解不等式①得:x3,解不等式②得:x1,2.(2010重庆,18,6分)解不等式2x-3,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:3(2x﹣3)6x﹣93.(2011浙江衢州,18,6分)解不等式,并把解在数轴上表示出来.考点:解一元一次不等式;不等式的性质;在数轴上表示不等式的解集。专题:计算题;数形结合。分析:根据不等式的性质得到得3(x﹣1)1+x,推出2x4,即可求出不等式的解集.解答:解:去分母,得3(x﹣1)1+x,综合验收评估测试题(时间:120分钟 满分:120分)
一、选择题1.在方程组 中,若未知数x,y满足x+y0,则m的取值范围在数轴上的表示是图9-61中的()2.已知关于x的不等式(1-a)x2的解集为,则a的取值范围是()A.a0B.a1C.a0D.a13.如果不等式组 的解集是x-1,那么m的值是()A.1B.3C.-1D.-34.若三个连续的自然数的和不大于12,则符合条件的自然数有()A.1组B.2组C.3组D.4组5.已知关于x的不等式组 无解,则a的取值范围是()A.a-1B.a2C.-1D.a-1,或a26.函数 中,自变量x的取值范围是()A.x-2B.x-2C.x-2D.x-27.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm8.如果aA.ab0B.a+b0C.0D.a-b09.不等式3-2x7的解集是()A.x-2B.x-2C.x-5D.x-510.若不等式组 有解,则a的取值范围是()A.x-1B.a-1C.a1D.a
1二、填空题11.若a12.当a5时,不等式 的解集是________.13.不等式组 的解集是_________.14.如果一元一次不等式组 的解集为x3,那么a的取值范围是______.15.已知一元一次方程3x-m+1=2x-1的根是负数,那么m的取值范围是________.16.若代数式 的值不小于 的值,则x的取值范围是________.17.不等式组 的所有整数解的和是________.18.若关于x的不等式组 的解集为x2,则a的取值范围是_________.三、解答题19.解不等式5x-122(4x-3).20.解下列不等式(组).(1);(2);(3)(4).21.已知方程组 的解x为非正数,y为负数,求a的取值范围.22.已知正整数x满足,求代数式 的值.23.若干名学生合影留念,照相费为2.85元(含两张照片).若想另外加洗一张照片,则又需收费0.48元,预定每人平均交钱不超过1元,并都能分到一张照片,则参加照相的至少有几名学生?24.星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,且20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各买多少杯?(2)每人至少一杯饮料且奶茶至少两杯时,有几种购买方式?25.据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度.(本题计算结果精确到个位)(1)预计2012年底义乌市户籍人口约是多少人;(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩.26.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A,B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(一)班课外活动小组承接了这个园林造型搭配方案的设计,则符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低,最低成本是多少元?参考答案1.B2.B[提示:根据题意,由不等式两边同时乘(或除以)同一个负数,不等号的方向改变,得1-a0,即a1.]3.D4.D5.B[提示:若不等式组中各不等式的解集无公共部分,则原不等式组的解集是空集.]6.B7.B.8.C9.A10.A11.空集12.13.x214.a315.m216.[提示:根据题意,得 ,解得.]17.318.a-219.x-220.(1)x10.(2)x-11.(3)x0.(4)21.-222.提示:x=1,23.解:设参加照相的有x名学生,根据题意,得2.85+(x-2)0.48x,所以 ,即至少有4名学生参加照相.答:参加照相的至少有4名学生.24.解:(1)设买可乐、奶茶分别为x杯、y杯,根据题意得2x+3y=20(且x,y均为自然数),解得 y=0,1,2,3,4,5,6.代入2x+3y=20,并检验,得 所以有四种购买方式,每种方式可乐和奶茶的杯数分别为:(亦可直接用列举法求得)10,0;7,2;4,4;1,6.(2)根据题意:每人至少一杯饮料且奶茶至少两杯时,即y2且x+y8,由(1)可知有两种购买方式.25.解(1)(人).(2)设平均每年耕地总面积增加x亩.则有.26.(1)解:设搭配A种造型x个,则B种造型为(50-x)个,依题意,得 解得 3133.∵x是整数,x可取31,32,33,可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)解法1:由于B种造型的造价成本高于A种造型成本,所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33800+17960=42720(元).解法2:方案①需成本31800+19960=43040(元),方案②需成本32800+18960=42880(元),方案③需成本33800+17960=42720(元),应选择方案③,成本最低,最低成本为42720元.
第三篇:一次不等式复习教案
《一次不等式与一次不等式组》复习教学设计
审核:九年级数学组
目标确定的依据: 课标要求:
⑴结合具体问题,了解不等式的意义,探索不等式的基本性质。
⑵能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
⑶能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。中招考点分析:
⑴不等式的性质。
⑵一元一次不等式(组)的解法及解集表示。⑶一元一次不等式的实际应用。学情分析:
本节复习不等式,学生基本熟悉却欠缺灵活,没有真正用数学符号表示实际问题,培养解决问题的能力。复习目标:
(1)了解不等式的性质,会进行一元一次不等式(组)的解法及解集的运算。(2)解与一元一次不等式(组)有关的实际应用问题。评价任务;通过基础知识回顾达成目标一; 通过练习反馈和直击中考达成目标二。复习过程:
一、基础知识回顾: 1.有关概念:
①一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
②能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.③ 求不等式解集的过程叫解不等式.④由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
⑤不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。2.不等式的基本的性质: 性质1.性质2: 性质3:
不等式的其他性质:传递性:若a>b,且b>c,则a>c 3.解不等式的步骤:
1、去分母;
2、去括号;
3、移项合并同类项;
4、系数化为1。4.解不等式组的步骤:
1、解出不等式的解集
2、在同一数轴表示不等式的解集。5.列一元一次不等式组解实际问题的一般步骤:
(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。
二、常考题型:
命题点1 解不等式(组)及其解集表示
1.(南昌)将不等式3x-2<1的解集表示在数轴上,2.(怀化)不等式3(x-1)≤5-x的非负整数解有()A.1个 B.2个 C.3个 D.4个
3.(天津8分)解不等式组x+2≤6 ①3x-2≥2x ②.请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得____________;(Ⅱ)解不等式②,得____________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为____________.
命题点2 一次不等式的实际应用
1.(东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()命题点3 方程与不等式的实际应用
1.(衢州6分)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度.已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;
(2)已知该家庭每月平均用电量为150度.若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).
三、练习反馈:
1.不等式组2x+2>x3x<x+2的解集是()A.x>-2 B.x<1 C.-1<x<2 D.-2<x<1 2.(2016聊城)不等式组x+5<5x+1x-m>1的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0 3.(西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块 B.104块 C.105块 D.106块
四、直击中考 河南近8年考题《试题研究》。1.做《试题研究》练习2.错题矫正
五、板书设计:
一次不等式与一次不等式组复习
1.基础知识回顾概念;2.不等式的基本的性质: 3.练习运算: 4.演板:
课后反思:
第四篇:一元一次不等式组教案
一元一次不等式组教案
教学目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式的必要性;
3、逐步熟悉数形结合的思想方法,感受类比和化归思想。
4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。
5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点:
重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程:
呈现目标
目标一:创设情景,引出新知
(教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
(教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨
数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1
2x+3≥x+11 -1<2-x
目标三:归纳总结
反馈矫正 解下列不等式组(1)
3x-15>0 7x-2<8x(2)
3x-1 ≤x-2-3x+4>x-2
(3)
5x-4≤2x+5 7+2x≤6+3x
(4)
1-2x>4-x 3x-4>3
归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4
x>4
x<4
x>4 X<2
x>2
x>2
x<2 X<2
x>4
2<x<4
无解
教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高
知识拓展 《完全解读》第230页
已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。
探究合作
小组学习:各学习小组围绕目标
一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚;
教师引导:(1)什么是不等式组?
(2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的?
展示点评
分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。
教师点评:教师推荐解不等式组口决。
巩固提高
教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。
第五篇:高二不等式复习
高二不等式复习
本周重点:复习不等式一章的整体知识结构
本周难点:进一步深化不等式应用的思想和方法
本周内容:
1、不等式的性质是证明不等式和解不等式的基础。不等式的基本性质有:
(1)对称性或反身性:若a>b,则b (2)传递性:若a>b,b>c,则a>c; (3)可加性:,此法则又称为移项法则: (4)可乘性:a>b,当c>0时,ac>bc:当c<0时,ac 不等式运算性质: (1)同向相加:若a>b,c>d,则a+c>b+d: (2)正数同向相乘:若a>b>0,c>d>0,则ac>bd。 特例: (3)乘方法则:若a>b>0,n∈N+,则an>bn; (4)开方法则:若a>b>0,n∈N+,则 : (5)倒数法则:若ab>0,a>b,则 掌握不等式的性质,应注意: (1)条件与结论间的对应关系,如是 符号还是符号 : (2)不等式性质的重点是不等号方向,条件与不等号方向是紧密相连的。 2、均值不等式:利用完全平方式的性质,可得a2+b2≥2ab(a,b∈R),该不等式可推广为a2+b2≥2|ab|;或变形为 ; 当a,b≥0时,在具体条件下选择适当的形式。 3、不等式的证明: (1)不等式证明的常用方法:比较法,公式法,分析法,反证法,换元法,放缩法: (2)在不等式证明过程中,应注重与不等式的运算性质联合使用: (3)证明不等式的过程中,放大或缩小应适度。 4、不等式的解法: 解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。 一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。利用序轴标根法可以解分式及高次不等式。 含参数的不等式应适当分类讨论。 5、不等式的应用相当广泛,如求函数的定义域,值域,研究函数单调性等。在解决问题过程中,应当善于发现具体问题背景下的不等式模型。 用基本不等式求分式函数及多元函数最值是求函数最值的初等数学方法之一。 研究不等式结合函数,数形结合思想,等价变换思想等。 本周例题 例 1、已知f(x)=ax2-c,-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的取值范围。 分析: 从条件和结论相互化归的角度看,用f(1),f(2)的线性组合来表示f(3),再利用不等式的性质求解。 设f(3)=mf(1)+nf(2) ∴9a-c=m(a-c)+n(4a-c) ∴9a-c=(m+4n)a-(m+n)c ∵-4≤f(1)≤-1,-1≤f(2)≤5 ∴-1≤f(3)≤20 说明: 1.本题也可以先用f(1),f(2)表示a,c,即代入f(3),达到用f(1),f(2)表示f(3)的目的。,然后 2.本题典型错误是-4≤a-c≤-1,-1≤4a-c≤5中解出a,c的范围,然后再用不等式的运算性质求f(3)=9a-c的范围。错误的原因是多次运用不等式的运算性质时,不等式之间出现了不等价变形。 3.本题还可用线性规划知识求解。 例2.设a>0,b>0,求证: 分析: 法一:比差法,当不等式是代数不等式时,常用比差法,比差法的三步骤即为函数单调性证明的步骤。 ∴左≥右 法二:基本不等式 根据不等号的方向应自左向右进行缩小,为了出现右边的整式形式,用配方的技巧。 ∴两式相加得: 例3.设实数x,y满足y+x2=0,0 分析: 说明:本题在放缩过程中,利用了函数的单调性,函数知识与不等式是紧密相连的。 例4.已知a,b为正常数,x,y为正实数,且 分析:,求x+y的最小值。 法一:直接利用基本不等式:当且仅当 时等号成立 说明:为了使得等号成立,本题利用了“1”的逆代换。 法二:消元为一元函数 途径一:由 ∵x>0,y>0,a>0 当且仅当时,等号成立 途径二:令 当且仅当时,等号成立 说明:本题从代数消元或三角换元两种途径起到了消元作用。 例5.已知f(x)=-3x2+a(6-a)x+b (1)解关于a的不等式f(1)>0; (2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值。 分析: (1)f(1)=-3+a(6-a)+b=-a2+6a+b-3 ∵f(1)>0 ∴a2-6a+3-b<0 △=24+4b 当b≤-6时,△≤0 ∴f(1)>0的解集为φ 当b>-6时,∴f(1)>0的解集为 (2)∵不等式-3x2+a(6-a)x+b>0的解集为(-1,3) ∴f(x)>0与不等式(x+1)(x-3)<0同解 ∵3x2-a(6-a)x-b<0解集为(-1,3) 例6.设a,b∈R,关于x方程x2+ax+b=0的实根为α,β,若|a|+|b|<1,求证:|α|<1,|β|<1。 分析: 在不等式、方程、函数的综合题中,通常以函数为中心。 法一:令f(x)=x2+ax+b 则f(1)=1+a+b>1-(|a|+|b|)>1-1=0 f(-1)=1-a+b>1-(|a|+|b|)>0 又∵0<|a|≤|a|+|b|<1 ∴-1 ∴f(x)=0的两根在(-1,1)内,即|α|<1,|β|<1 法二: 同理: 说明:对绝对值不等式的处理技巧是适度放缩,如|a|-|b|≤|a+b|及|b|-|a|≤|a±b|的选择等。 例7.某人乘坐出租车从A地到B地,有两种方案:第一种方案,乘起步价为10元,每km价1.2元的出租车;第二种方案,乘起步价为8元,每km价1.4元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等,则此人从A地到B地选择哪一种方案比较适合? 分析: 设A地到B地距离为mkm,起步价内行驶的路为akm 显然,当m≤a时,选起步价为8元的出租车比较合适 当m>a时,设m=a+x(x>0),乘坐起步价为10元的出租车费用为P(x)元,乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2x,Q(x)=8+1.4x ∵P(x)-Q(x)=2-0.2x=0.2(10-x) ∴当x>0时,P(x) 当x<10时,P(x)>Q(x),此时选起步价为8元的出租车比较合适 当x=10时,此时两种出租车任选 本周练习: (一)选择题 1.“a>0且b>0”是的() A 充分而非必要条件 B.必要而非充要条件 C.充要条件 D.既非充分又非必要条件 2.设a<0,则关于x的不等式42x2+ax-a2<0的解集为