第一篇:11-12学年高一数学教案:3.2.3 指数函数与对数函数的关系
3.2.3指数函数与对数函数的关系
教学目标:知道指数函数与对数函数互为反函数 教学重点:知道指数函数与对数函数互为反函数 教学过程:
1、复习指数函数、对数函数的概念
2、反函数的概念:一般地,函数yf(x)中x是自变量,y是x的函数,设它的定义域为A,值域为C,由yf(x)可得x(y),如果对于y在C中的任何一个值,通过x(y),x在A中都有唯一的值和它对应,那么x(y)就表示x是自变量y的函数。这样的函数x(y)yC叫函数yf(x)的反函数,记作:xf惯上,用x表示自变量,y表示函数,因此yf(x)的反函数xf11(y)。习
(y)通常改写成:yf1(x)
注:①明确反函数存在的条件:当一个函数是一一映射时函数有反函数,否则如yx2等均无反函数;
② 与互为反函数。
③的定义域、值域分别是反函数的值域、定义域
3、奇函数若有反函数,则反函数仍是奇函数,偶函数若存在反函数,则其定义域为{0};若函数yf(x)是增(减)函数,则其反函数yf4、求反函数的步骤:由yf(x)解出xf交换x,y,得yf111(x)是增(减)函数。
(y),注意由原函数定义域确定单值对应;
(x);根据yf(x)的值域,写出yf1(x)的定义域。
例
1、求下列函数的反函数: ①
保护原创权益净化网络环境
②
③
④ 解:略
课堂练习:教材第114页 练习A、B
小结:本节课知道指数函数与对数函数互为反函数 课后作业:略
保护原创权益净化网络环境
第二篇:高一数学教案:对数函数
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培养学生数形结合的思想,以及分析推理的能力.教学重点:
对数函数性质的应用.教学难点:
对数函数的性质向对数型函数的演变延伸.教学过程:
一、问题情境
1.复习对数函数的性质.2.回答下列问题.(1)函数y=log2x的值域是;
(2)函数y=log2x(x≥1)的值域是;
(3)函数y=log2x(0
3.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.三、数学运用
例1 求函数y=log2(x2+2x+2)的定义域和值域.练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是.(3)函数y=log(x2-6x+17)的值域.(4)函数 的值域是_______________.例2 判断下列函数的奇偶性:
(1)f(x)=lg(2)f(x)=ln(-x)
例3 已知loga 0.75>1,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a>0,a≠1).(1)求函数的定义域与值域;
(2)求函数的单调区间.练习:
1.下列函数(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).2.函数y=lg(-1)的图象关于 对称.3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=.4.求函数,其中x [,9]的值域.四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).五、作业
课本P70~71-4,5,10,11.
第三篇:高一数学教案:对数函数1
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
课题 对数函数
教学目标
在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出学生口答求反函数的过程:
由 得
是指数函数,它是存在反函数的.并由一个
.又 的值域为,3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
所求反函数为 .
那么我们今天就是研究指数函数的反函数-----对数函数.
2.8对数函数(板书)
对数函数的概念
定义:函数对数函数.
的反函数
叫做
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为
.
,且底数 就是指数函数中的,故有着相同的限制条件
在此基础上,我们将一起来研究对数函数的图像与性质.
二.对数函数的图像与性质(板书)
作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.
由于指数函数的图像按
和
分成两种不同的类型,故对数函数 和
,并分别以
的图像也应以1为分界线分成两种情况和 为例画图.
具体操作时,要求学生做到:
指数函数趋势等).
画出直线 和 的图像要尽量准确(关键点的位置,图像的变化 .
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而折,在 左侧的先翻,然后再翻在 的图像在翻折时可提示学生分两段翻
右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和一坐标系内)如图:
的图像.(此时同底的指数函数和对数函数画在同
草图.
教师画完图后再利用投影仪将标系内,如图:
和 的图像画在同一坐
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
性质
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
定义域:
值域:
由以上两条可说明图像位于 轴的右侧.
截距:令为渐近线. 得
,即在 轴上的截距为1,与 轴无交点即以 轴
奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
单调性:与 有关.当
当 时,在 时,在 上是增函数.即图像是上升的
上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有
;当
时,有
.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用(板书)
研究相关函数的性质
求下列函数的定义域:
(1)
(2)
(3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
利用单调性比较大小(板书)
比较下列各组数的大小
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
(1)与 ;(2)与 ;
(3)与 ;(4)与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若
四.小结
五.作业 略
板书设计
,求 的取值范围.
教案点评:
根据教材内容和课程标准的要求,本节课的重点是理解对数函数的定义,掌握图像和性质。教案的编写从四个环节设计教学过程。各个教学环节,依据教学内容和教学目标的不同要求,呈现的教学方式、方法各有不同,第一个环节从复习指数函数开始,有学生熟悉的指数函数入手,引起学生兴趣;第二个环节是对数函数的定义;第三个环节:因为学生已经具有一定的作图能力,让学生画出常见的几个函数图象,并总结出对数函数的性质。第四个环节:简单应用。因此通过学生之间、师生之间的交流、讨论,使知识系统化、条理化,利于学生记忆对数函数的性质。
3eud教育网 http://www.3edu.net 教学资源集散地。可能是最大的免费教育资源网!
第四篇:指数函数、对数函数、幂函数教案
一、指数函数
1.形如yax(a0,a0)的函数叫做指数函数,其中自变量是x,函数定义域是R,值域是(0,).
2.指数函数yax(a0,a0)恒经过点(0,1). 3.当a1时,函数yax单调性为在R上时增函数; 当0a1时,函数yax单调性是在R上是减函数.
二、对数函数 1. 对数定义:
一般地,如果a(a0且a1)的b次幂等于N, 即abN,那么就称b是以a为底N的对数,记作 logaNb,其中,a叫做对数的底数,N叫做真数。
b 着重理解对数式与指数式之间的相互转化关系,理解,aN与blogaN所表示的是a,b,N三个量之间的同一个关系。2.对数的性质:
(1)零和负数没有对数;(2)loga10;(3)logaa1
这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3.两种特殊的对数是:①常用对数:以10作底 log10N简记为lgN ②自然对数:以e作底(为无理数),e= 2.718 28……,loge4.对数恒等式(1)logaabb;(2)alogaNN简记为lnN.
N
b 要明确a,b,N在对数式与指数式中各自的含义,在指数式aN中,a是底数,b是指数,N是幂;在对数式blogaN中,a是对数的底数,N是真数,b是以a为底N的对数,虽然a,b,N在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求b对数logaN就是求aN中的指数,也就是确定a的多少次幂等于N。
三、幂函数
1.幂函数的概念:一般地,我们把形如yx的函数称为幂函数,其中x是自变量,是常数;
注意:幂函数与指数函数的区别. 2.幂函数的性质:
(1)幂函数的图象都过点(1,1);
(2)当0时,幂函数在[0,)上单调递增;当0时,幂函数在(0,)上 单调递减;
(3)当2,2时,幂函数是 偶函数 ;当1,1,3,时,幂函数是 奇函数 .
四、精典范例 例
1、已知f(x)=x·(31311); x221(1)判断函数的奇偶性;(2)证明:f(x)>0.【解】:(1)因为2-1≠0,即2≠1,所以x≠0,即函数f(x)的定义域为{x∈R|x≠0}.x
x11x32x1)=·x又f(x)=x(x,2212123(x)32x1x32x1··f(-x)==f(x),22x122x1所以函数f(x)是偶函数。
x32x10.(2)当x>0时,则x>0,2>1,2-1>0,所以f(x)=·x2213
x
x又f(x)=f(-x),当x<0时,f(x)=f(-x)>0.综上述f(x)>0.a·2xa2(xR),若f(x)满足f(-x)=-f(x).例
2、已知f(x)=x21(1)求实数a的值;(2)判断函数的单调性。
【解】:(1)函数f(x)的定义域为R,又f(x)满足f(-x)= -f(x),所以f(-0)= -f(0),即f(0)=0.所以
2a20,解得a=1,22(2x12x2)2x112x21(2)设x1 3、已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(,)在函数y=g(x)的图象上运动。(1)写出y=g(x)的解析式; (2)求出使g(x)>f(x)的x的取值范围; (3)在(2)的范围内,求y=g(x)-f(x)的最大值。【解】:(1)令 xy32xys,t,则x=2s,y=2t.32因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1),11log2(3s+1),所以g(x)= log2(3s+1)221(2)因为g(x)>f(x)所以log2(3x+1)>log2(x+1) 2即t=3x1(x1)23即0x1(3)最大值是log23- 2x10x2.例 4、已知函数f(x)满足f(x-3)=lg2x62(1)求f(x)的表达式及其定义域;(2)判断函数f(x)的奇偶性; (3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值.解:(1)设x-3=t,则x=t+3, 所以f(t)=lg2 t3t3lg t36t3x3x30,得x<-3,或x>3.解不等式x3x3x3所以f(x)-lg,定义域为(-∞,-3)∪(3,+∞).x3所以f(x)=lg x3x3x3lglg=-f(x).x3x3x3x3(3)因为f[g(x)]=lg(x+1),f(x)=lg,x3(2)f(-x)=lg所以lgg(x)3g(x)3lg(x1),所以g(x)3g(x)3x1,(g(x)3g(x)30,x10).解得g(x)=3(x2)x, 所以g(3)=5 龙源期刊网 http://.cn 4指数函数和对数函数 作者: 来源:《数学金刊·高考版》2014年第03期 指数函数和对数函数是高中数学中最重要的两个基本初等函数,是各地高考数学试卷中考查函数定义域、值域、单调性、奇偶性、反函数、图象变换的重要载体;它也一直是高考的热点问题之一,试题难度一般不大,通常在选择题、填空题中单独考查,或作为试题的载体在解答题中出现.熟练掌握指数函数、对数函数的图象和性质是解决相关问题的前提和基础,对相关的基本概念的掌握出现细小的偏差也会造成致命的错误,因此本考点的复习重点是理清指数函数、对数函数的图象和性质.比较困难的问题是有关指数函数、对数函数的综合应用问题,因此同学们在复习本考点时,要特别注意如何利用指数函数、对数函数的图象和性质研究与之相关的简单复合函数的图象和性质.(1)由于指数函数、对数函数的图象和性质与其底数有直接的联系,所以在具体的解题过程中要明确底数的大小,注意运用分类讨论的思想来解决问题.由于本考点所涉及的试题通常是选择题和填空题,若能画出问题所涉及的相关函数的图象,则往往能事半功倍,所以在具体的解题过程中要熟悉图象的对称变换、平移变换、伸缩变换,通过这些变换画出相关函数的图象解决问题,即注意运用数形结合的思想.对于以指数函数、对数函数为模型的新情景、新问题,往往可通过等价转化的方法来解决.第五篇:4指数函数和对数函数