第一篇:《比例尺的应用》教案01
《比例尺的应用》教案
教学内容:
教科书第48~50页的例1~例2,练习八的第1题。
教学目的:
使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:
理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:
设未知数时长度单位的使用。
教具准备:
教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一.复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=()分米=()厘米=()毫米
1千米=()米=()厘米
2.什么叫做比? 3.化简下面各比。
:8
10厘米:100厘米
2米:140厘米
3米:15千米
16厘米:90千米 二.新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。1.教学比例尺的意义。(1)教学例2。让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离 “图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下: 图上距离 :实际距离 10厘米 : 10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式: 图上距离 :实际距离
: 1000 请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:„”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。(2)巩固练习。
让学生完成第51页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。(1)教学例2。在比例尺是1:6000000的地图上,量得南京到北京的距离是10厘米。南京到北京的实际距离大约是多少千米? 指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。“这道题的图上距离是多少?”板书:10 “实际距离不知道,怎么办?”(用x表示。)在10的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:
指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:50000000厘米=500千米,并写出这道题的答。之后,再回忆一下解答过程。(2)巩固练习。
做第 52页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。(3)教学例6。
出示例3:一个长方形操场,长80米,宽60米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)
教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。三.练习
1.比例尺=()
实际距离=()
图上距离=()2.2.5米=()厘米
0.00006千米=()厘米
0.032米=()厘米
350000厘米=(3.5千米=(课后反思:)千米)厘米
第二篇:比例尺的应用教案
比例尺的应用教案
教学内容:教科书第50页的例2,完成课本第54页练习八第5、6题。教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。教学过程
一、复习导入。
1、(1)什么叫比例尺?你能说出比例尺的公式吗? 板书:[图上距离:实际距离=比例尺](2)数值比例尺的前后项的单位需要注意什么?通常都是用什么单位?【单位要相互统一,通常都是用 cm 作单位】
2、说一说,下列比例尺的意思: 1:200000
1:5000000 2:1 50000【图上1 cm ,相当于实际2 km 】
二、教学新课
1、教学例2。
(1)出示一段关于我国地铁发展简史的视频,激发学生学习兴趣。引申出南宁再见地铁建设工程。(南宁地铁1号线一期工程西起石埠,东至南宁东站。预计2016年年中建成通车。)
师:大家看这就是北京市早期的地铁规划图,你仔细的观察,说一说这幅规划图的比例尺是多少?【1:500000】 说一说这个比例尺的意义。
师:今天我还带来了一道要使用这个比例尺解决的问题,请同学们看。
(2)可见出示题目,并让学生读题。
例2:下面是北京市地图规划图。地铁1号线在图中的长度大约是10厘米,它的实际长度大约是多少?
(3)学生读题,让后进行分析,请学生先把关键词先写在草稿本上,在让学生回答问题。
师:题目让我们要求的是什么?那该把那个关键词圈起来? 师:题目中还告诉了我们那些已知条件,那我们也把它圈起来。 师:结合前面的比例尺,我们来看看这个这道题是否可以解答了?该怎样解答呢?
板书:图上距离:实际距离
:500000
10cm
: x cm(4)根据对1:500000的理解让学生交流算法,说说为什么这样算?尝试练习(重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,地铁一号线的图上距离与实际距离的比一定与哪个比相等?引导学生使用解比例的方法解答)。注意:解答的过程中要让学生注意到比例式的单位要统一,最后的单位要换算成“千米”作单位的数。
三、巩固练习。
1、完成课本54页第6题,学生读题,圈出关键词,列式解答。(让学生先独自圈出关键词,然后师生共同对证,学生们在独立完成此题)
师:想一想,我们该圈出那些关键词,把你圈好的关键词告诉大家?
2、出示南宁地铁规划图,地铁一号线中朝阳广场到琅东汽车站在图上的距离大约是12cm。求朝阳广场到琅东汽车站的实际距离是多少?
(此题设计的图上比例尺为线段比例尺,让学生灵活运用线段比例尺快速的口算出实际距离的大小)
3、完成课本54页第5题,学生读题,圈出关键词,对比第6题,想一想它有什么不同。
四、全课小结。通过本课的学习,你又掌握了什么新的本领? 拓展练习:学校要建设一个长为28m,宽15m。用1:500的比例尺画一个平面图,想一想这个平面图上的长和宽分别是多少?【想一想该怎样解答,请你说一说】
第三篇:《比例尺的应用》教案
比例尺的应用
教学目标:
1.进一步认识比例尺,能熟练地求出比例尺,图上距离和实际距离,会用比例尺的知识解决一些简单的实际问题。
2.通过合作探究,运用方程解决比例尺一些实际问题,提高解决问题的能力。
3.体验数学在实际生活中的应用,体会学习数学的乐趣。教学重点:能够根据给定的比例尺解决生活中的实际问题。教学难点:能够根据比例尺绘制平面图。教学过程:
一、复习导入
1.复习提问
⑴什么是比例尺?关于比例尺你了解了哪些内容?(引导学生从对比例尺意义的认识,对数值比例尺和线段比例尺的认识等方面回答)
⑵说一说下列比例尺表示的具体意义。(引导学生说一说各种比例尺的实际意义)①比例尺1:250000 ②比例尺80:1 ③比例尺0∣__∣20∣__∣40km 2.导入新课
回顾完上节课的内容,接下来我们学习新的知识。老师板书课题:比例尺的应用。
二、新授
1.教学例2,根据比例尺求出实际距离或图上距离。
课件出示例2,读题后审题,找出已知条件和所求问题。思考交流,如何求从苹果园站至四惠东站的实际长度?(根据比例尺的意义,设实际距离为xcm,用解比例的方法求出实际距离是多少厘米;根据比例的意义,直接用图上距离7.8米乘比例尺中的400000,求出实际距离是多少厘米。)使学生明确:为什么设的实际长度要以“cm”为单位?(因为图上距离的单位是cm,只有图上距离的单位和实际距离的单位统一了,才能计算出正确的结果。)列比例尺的依据是什么?(图上距离/实际距离=比例尺)400000表示什么?(实际距离400000cm)。之后让学生独立用解比例的方法解决问题,再指名学生板演: 解:设从苹果园站至四惠东站的实际长度是xcm。7.8/x=1/400000 x=7.8×400000 x=3120000 3120000cm=31.2km 答:从苹果园站至四惠东站的实际长度大约是31.2千米。
巩固拓展:如果在比例尺为1:400000的规划图上,地铁1号线上的某两地之间的距离是1千米,那么这两地之间的图上距离是多少?
1千米=100000厘米
解:设这两地之间的图上距离是xcm。x/100000=1/400000 x=100000÷400000 x=0.25 答:这两地之间的图上距离为0.25cm。2.教学例3,根据比例尺画平面图。
出示例3,读题,你从题中知道了哪些信息?我们要解决哪些问题?怎样才能准确地画出平面图呢?(引导学生明确,若想画得准确,应按照题目中给定的比例尺求出三个同学家到学校的图上距离)分别求出三个同学家到学校的图上距离后,学生动手画图,老师巡视指导,之后反馈集体订正。
小结概括根据比例尺画图的一般方法:
⑴根据比例尺计算图上距离。⑵根据数据,画出图形。
三、巩固应用:
1.P55做一做,引导学生说一说绘制平面图前应做好哪些准备工作,绘图时应注意哪些问题,再完成本题。
2.P57 5.学生独立完成后,交流需要注意的地方 3.P57 8.填写后,说出求图上距离和实际距离的方法
4.P57 9.
四、小结:通过本节课的学习,你有什么收获?在应用比例尺解决问题时,你认为需要注意什么?
第四篇:比例尺教案
比例尺教案
教学目标:
1.让学生在实践活动中体验生活中需要比例尺。
2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备 多媒体
教学过程:
一、复习导入
1.填空(课件出示)
1千米=()米 1米=()厘米 1千米=()厘米
4千米=()厘米
5千米=()厘米
200千米=()厘米 1000厘米=()米
3000000厘米=()千米
60000000厘米=()千米
2、用格尺在练习本上划线段
1厘米
10厘米
1米(有学生会发出质疑)哪有那么大的本子?不够画怎么办? 学生交流汇报后导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。这就需要涉及到一种新的知识。今天我们一起来研究这一问题。
二、独立探究、合作生成
教师:请同学们再在自己纸上画出长9米,宽6米的教室地面来。
学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办? 学生2:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?
(学生的答案可能有:长方形长9厘米,宽6厘米。或者是长3厘米,宽2厘米。)
教师:你的想法很对,跟老师的想法一样(用课件出示教室的平面图),在这幅图上你们发现了什么新
问题? 学生:在图的右下方有“比例尺1:300”
教师:观察真仔细!比例尺1:300是什么意思? 1学生讨论。
2学生汇报: 学生1:图上1厘米长的线段表示实际300厘米。
学生3:图上距离是实际距离的1/300。
学生2:表示实际距离是图上距离的300倍。
3揭示比例尺的意义。
教师:说得真不错,比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)
二、自然生成、进行应用
1、教师补充板书:图上距离:实际距离=比例尺
或者:图上距离/实际距离=比例尺
2、教师:你们在什么地方看到过比例尺? 学生1:在中国地图上。
学生:在世界地图上。
学生:在房屋设计图上。
……
3、出示各种比例尺,认识比例尺特征:(1)课件出示各种比例尺……
说说他们表示图上距离1厘米相当于实际距离()米或()千米。(2)再次课件出示这些比例尺……
教师:通过观察,你们发现比例尺有什么特点?
学生:比例尺是一个比;比例尺的前项和后项的单位相同;比例尺的前项一般是1。
4、运用知识,尝试解决问题:同学们理解的真好,你们能解决实际生活中的问题吗?(打开书先帮笑笑解决一下问题)
教师:图中比例尺1:100还表示什么意思?(注重意思的多样化)学生交流(略)教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。
算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。
(1)学生独立完成。
(2)汇报算法
学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米
学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
学生3:卧室的实际面积是5×4=20平方米
三、解决问题、巩固提高
1、算出笑笑家的总面积是多少平方米?
2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。小组交流后汇报
四、研究性作业
1、课件展示练习
应用1)在这副图中,量得南京到北京的图上距离是4.5厘米,表示实际距离900千米。你能计算出这副图的比例尺吗?
(2)选择、1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。
()
2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的()3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离.()
(3)判断、(1)用10厘米表示实际距离9千米,这副图的比例尺是()。
A 1∶900000
B 1∶90000
C
1∶900(2)1∶240000000表示图上1厘米,实际是()千米。
A
B
240
C 2400 应用2)我们学校操场的长是200米,宽是100米。同学们,你们能自己确定比例尺,把操场的平面图画下来吗?
五、总结深化、活化知识 这节课的学习大家有哪些收获?
第五篇:比例尺教案
北师大版六年级数学下册教案--(比例尺)
一、教学目标:
1、知识与技能:认识比例尺,能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2、过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
3、情感、态度、价值观:使学生感受到数学源于生活,培养学生积极思考的习惯,体会数学与日常生活的密切联系。
二、教学重、难点:
1、理解比例尺的含义。
2、能根据图上距离、实际距离、比例尺中的两个量求第三个量。
教学准备
教具准备:课件、中国地图一张。
学具准备:尺子、铅笔。
三、教法学法:
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
四、教学过程:
(一)、复习引入新课
师:出示相关长度单位的复习内容,集体订正。生:独立完成练习,相互检查。
师:出示学习目标,明确学内容。
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)
师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的? 生:交流讨论,小组汇报。
(生动脑想、动手写)
(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)
师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)
(二)、意义建构(认识比例尺)
1、介绍各种比例尺的名称。
师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。
2、认识比例尺。
如:师问比例尺1:6000000是什么意思?
生:就是图上1厘米的长度代表现实中的6000000厘米。
师:比例尺1:230000是什么意思?
生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。
师:同学们讲得都对,那到底什么是比例尺?
引导得出:
1、比例尺就是一种可以把实际距离放大或缩小的计量单位。
2、我认为比例尺就是图上长度比上现实中长度。
3、图上画的长度与现实距离的比。
4、图上长度与实际距离的比。
师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。
板书:比例尺=图上距离/实际距离
由上列公式并推导出:图上距离=比例尺x实际距离
实际距离=图上距离/比例尺
(让学生按自己的理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)
(三)、实际应用(比例尺的应用)
1、出示课件
师:设计一座厂房,在平面图上用10厘米的距离表示地面上10米的的距离。求图上距离和实际距离的比。
2、要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?
(1)学生自己阅读。
(2)计算出比例尺,先小组内交流自己的想法,然后全班交流。
(3)先让学生理解题意,再独立思考、解决,全班交流。
(4)先尝试解决,再全班交流。
3、一个长方形操场,长110米,宽90米。把它画在比例尺是1:1000的图纸上,长和宽各应画多少厘米?
4、师:我们画的操场平面图,你现在有办法让别人知道我们的场有多大了吗?能把它用我们学过的知识画在图纸上吗?
五、课堂小结:
1、通过本节课的学习,你有什么收获?还有什么问题吗?
2、我们所学知识在我们生活中有重要的作用,我们不仅要学会数学,更要会用数学解决身边的实际问题。
3、能够根据比例尺来计算图上距离和实际距离。