第一篇:数学广角中的植树问题教学设计
植树问题教学设计
黎阳镇中心小学
教学内容
义务教育课程标准人教版四年级下册《植树问题》,117页例1 目标预设
1.学生通过解决条件开放的植树问题,并借助图式分析题意,初步体验到植树问题的常见类型,建立起相应的表象。
2.通过题组练习、图表分析,发现(两端都种)植树问题中棵数与段数间的关系。
3.学生会应用植树问题的模型去解决生活中类似的实际问题。教学重、难点
发现植树的棵数和间隔数的关系,并运用发现的规律解决实际问题。教学过程
一、课前活动
1、每位同学都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直。
师:现在请每位同学将五指张开,数一数,张开后有几个空格?(4个)师:在数学上,我们把这个空格叫“间隔”。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、指名学生上台排队演示间隔。
3、课件出示生活中的间隔,并指名数一数间隔数。
4、生活中所有存在间隔的问题我们把它统称为植树问题。今天我们就来学习有趣的植树问题。(板书课题)
【课前活动中,创设情境从学生的生活入手,利用问题情境“每位同学都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?”充分调动学生的积极性,导入新课。通过动手、学生上台演示介绍间隔,能收到较好的效果。】
二、探究棵数与间隔的关系
过渡语:大家知道,3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,今天你们也有一个植树任务要完成,愿意吗? 1.(出示题一)为了美化环境,小区物业准备在一条长12米的小路一侧种小树,每隔6米种一棵(两端都种),该怎么种?你能用线段图画一画吗? 学生独立思考后,在方案纸上画出图示。并展示两端都种的方法。
2、小组活动:如果每隔4米、3米、2米、种一棵(两端都栽)分别能栽多少棵? ①按要求画一画。②学生画图,师巡视
3、引导学生从图示中发现规律。①棵数与间隔数有什么关系? ②间隔数如何求? 板书:棵数=间隔+1 路长=间隔×间距
4、小结:同学们不仅会观察,还能发现其中蕴含的规律,真不错,那就让我们一起运用这些规律来解决生活中的实际问题吧!
【通过创设小区物业在小路一侧种小树的现实问题情境,引导学生通过画图实际种一种去体验。并通过观察各种方案图示从中发现棵数与间隔之间的关系。】
三、自主学习
下面不画线段图,你能很快解答类似的植树问题了吗? 我们一起来看这样一道植树问题:
出示例1:有一条全长100米的小路,同学们在路的其中一边植树,每隔5米种一棵树(两端都要种)。一共需要多少棵树苗? ① 安静地把题目读一读。
② 引导学生说出100米和5米分别是什么?(路长
间距)③ 认真解答在练习纸上。
④ 反馈。(谁来介绍下,算式中各步骤的含义?)板书:100÷5=20(段)
20+1=21(棵)
四、巩固应用
(一)填一填
1.9棵树之间有()段间隔。5段间隔需要()盏路灯。2.一条路上共有11个间隔,间距为5米,这条路有()米。3.在学校走廊一侧摆花盆,走廊长为50米,每隔5米摆一盆花,共有()段间隔,需要()盆花。如果走廊两侧都摆共需要()盆花。
(二)小试牛刀
1、工人要在长130米的老大桥的一侧安装节能路灯(两端都装),每两根路灯之间的距离是10米,需要安装多少盏路灯? 如果大桥两侧都安装需要多少盏?
2、操场上6个同学排成一排,每相邻两个同学之间的距离是2米,那么从第1个同学到第6个同学的距离有多长?
(三)课堂提升
为了美化环境,小区物业准备在房子中间一条长12米的小路一侧种小树,每隔6米种一棵树,该怎么种?(如下图)【课堂练习设计了三个环节,填一填、小试牛刀、课堂提升。由简到深,填一填是本课中最基础知识,也是学生必须掌握的知识;小试牛刀设计有两题第一题是与例题同一类型的只是路两侧都装的情况,第二题是与例题相反的类型,属于有点难度的题目;课堂提升是发散学生的思维,植树问题除了两端都种以外还有各种情况,不要求学生都会做,只是让学生了解。题型设计也比较多,有填空、应用题、动手操作题。】
五、畅谈收获,全课总结
1、同学们,今天你有哪些收获或感受呢?说出来与大家分享一下哦!
2、今天我们学习的仅仅是两端都栽的情况。在以后的学习中,我们还会学到一端栽和两端不栽,以及封闭图形的植树问题。
六、课外拓展
有20棵树,若每行四棵,问怎样种植,才能使行数更多? 【课外练习,以拓展学生的思维。】
板书设计:
植树问题(两端都种)
棵数=间隔+1
路长=间隔×间距
第二篇:《数学广角——植树问题》教学设计
《数学广角——植树问题》教学设计
教学过程:
一、初步感知间隔的含义
1、上课前我们猜个谜语,好吗?
(课件呈现:一棵小树5个杈,不长叶子不开花。能写会算还会画,天天干活不说话)师:谁来说说?
师:(课件出示)你们可真聪明!在我们手上也隐藏了数学奥秘,同学们想知道吗?看着这个手,你从中得到了什么数字?
生:5,5个手指。师:很好,还有吗?
生:4,4个空格(缝隙)。
师:观察的很仔细!在数学上我们把这样的空格叫间隔,4就是间隔数。(板书:间隔数)2.师:生活中到处都存在间隔,(课件出示图片)比如人民大会堂前两根柱子间有间隔,栏与栏间有间隔,树与树间也有间隔……
师:数学家把这些间隔现象称为植树问题。这节课我们就一起来探究一些简单的植树问题。(板书:植树问题)
二.新授
(一)、引导探究,发现“两端要种”的规律
师:(课件出示)请看,这是植树要求,谁来说说 “两端”是什么意思?
(学生回答。教师实物演示:指一指哪里是这根小棒的两端;如果把这根小棒看作是这条小路,在这条小路的两端要种就是在这根小棒的两头要种。)
现在请同学们自己试着解决这个问题,完成后与同桌相互交流。(学生回答)
师:现在出现了这几种答案,到底哪种答案是正确的呢?我们可以通过画图模拟实际种一种。但从图上一棵一棵种到100米,这样做太麻烦其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法——复杂问题简单化。用简单的例子来研究它们的规律,然后用找到的规律来解决原来的问题。大家想用这种方法试吗?
1、我们可以先在短距离的路上种一种,看一看
A、先种20米,每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(出示课件)
B、跟上面一样,每隔4米种一棵,这次你又分了几段,种了几棵?(出示课件)
C、任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?(抽生回答)
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)
是怎样求出间隔数的呢?(观察课件)我们看20米是什么? 5米又是什么? 板书:间隔数=全长÷间隔距离
师:如果知道间隔数和间隔距离能求出全长吗? 生汇报师板书:全长=间隔数×间隔距离
2、应用规律,解决问题。(1)、课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?(2)、解决实际问题(出示课件)A、出示题目
B、相互间比一比,看谁做得又对又快 C、班内交流 小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
(二)、合作探究,“两端不种”的规律
1、猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1 师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2、独立探究,合作交流。
3、展示小组研究成果,发现规律,验证前面的猜测。小结规律:现在老师和同学们一起来种一种(出示课件)。同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:
板书棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4、做一做。
大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁种树,相邻两棵树之间的距离是3米。一共要栽多少棵树?
问:这里没有告诉两端不种,你是从那里发现的?
(三)、回归生活,实际应用(1)、一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成)问:为什么要—1?这相当于今天学习的植树问题中的那种情况?(2)、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?(3)、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
(4)、两个房子间的距离是80米,如果每隔4米放一把椅子,一排能摆几把?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
三、课堂总结 :
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课后可以查阅有关的资料继续研究。比如:关与一端种,一端不种的植树问题。
四、课后探究:
学校有一条长600米的小路,准备在小路的两旁栽树。每隔4米栽一棵(一端种,一端不种)共需要多少棵树?
第三篇:数学广角——植树问题教学设计
数学广角——植树问题教学设计
一、教学目标:
(一)知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。3.能够借助图形,利用规律来解决简单植树的问题。
(二)过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。2.渗透数形结合的思想,培养学生借助图形解决问题的意识。3.培养学生的合作意识,养成良好的交流习惯。
(三)情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦
二、教学重、难点:
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
三、教学准备:课件、自己
四、教学过程:
<一>、创设情境,感知间隔 1.猜谜语
师:在上课之前,老师想请聪明的同学们来猜一个小谜语。
两棵小树十个叉,不长叶子不开花,能写会算还会画,天天干活不说话。(双手)双手创造了幸福的生活,在我们的手上也隐藏了数学奥秘,同学们想知道吗?
师:看着老师的手,你从中得到了什么数字?(5,5个手指)
师:老师从中也得到了一个数字—4,你们知道它指的是什么吗?(缝隙、空格等)
师:对了,指的是手指间的缝隙,在数学上我们把这样的空格叫做间隔。我们手上每两个手指之间有一个间隔,大家仔细观察老师的手,5个手指,有几个间隔?
4个手指的时候有几个间隔呢?3个手指,2个手指呢?
师:你们发现手指数与间隔数的关系了吗?谁能说一说?(指名答)你能用一个算式来表示手指数和间隔数之间的关系吗? 手指数=间隔数(指缝数)+1 2.引入
师:连手上都有这么多数学奥秘,看来数学真是无处不在!今天呀有位同学交给了老师这样的一道题,让我们一起来看一看。
<二>、初步感知、共同探索
1、出示题目,理解题意
小路长100米,每隔5米种一棵树,两端都种。
2、师:同学们先观察一下,他这样做你们同意吗? 3、100米比较长,那我们先来看一下在10米长的小路一边。结合图片分析得到结果
4、那如果是20米、25米呢?让我们再一起来看一看。<三>、合作探究,得出结论
1、师:接下来同学们分小组合作完成老师刚才给你们发的卡片。
2、总结
两端都载: 树的棵树=间隔数+1
3、出示例题并解决后学生独立完成做一做
4、在我们的生活中,是不是所有的植树问题都是两边都要种呢?(不是)因此,我们要根据情况来分析它应该怎么去种,下面请同学们翻到课本的118页让我们一起来看一看另外的情况。
5、分析例题
同样先来考虑一段短的长度,我们以6米和15米为例得出结论 板书 树的棵数=间隔数-1
6、巩固练习<四>、课堂总结
师:通过这节课的学习你有什么收获?
这节课我们学习了植树问题,发现了植树的规律,并能运用规律,解决生活中的实际问题。其实植树问题里还有许多有趣的知识,需要同学们在以后的学习中去探索和发现。
五、课后思考(只种一端)
假如是一端要栽的情况,植树的棵数和间隔数又是什么关系呢?
出示探索题。
板书设计:
植树问题
两端都栽:
棵数=间隔数﹢1
两端都不栽:棵数=间隔数-1
第四篇:数学广角《植树问题》说课稿
人教版五年级上册数学广角《植树问题》集体备课稿
沙镇中心校 主备人:德胜
一、单元教材分析
“植树问题”是人教版五年级上册“数学广角”的内容,本单元内容由原实验教材四年级下册移来,例3调整为封闭曲线上的植树问题。本单元共有三个例题,例1是直线植树中两端都栽的情况,例2是直线植树中两端都不栽的情况,例3是封闭曲线上植树问题。考虑到教学内容的需要,教学本部分知识时重点就是借助图画方法和“一一对应”“化繁为简”等方法解决问题。
二、本单元教学目标
1.引导学生通过观察、猜测、试验、推理等活动,初步体会植树问题的模型思想。2.通过画线段图初步培养学生探索解决问题有效方法的能力。
3.让学生尝试用植树问题的方法来解决实际生活中的简单问题,培养学生解决实际问题的能力。
三、本单元教学重点、难点
教学重点:建立“树的棵树与间隔数”的模型思想。
教学难点:学会运用图画方法和“一一对应” “化繁为简”的思想解方法决问题。
四、教学措施
1.例1:一条线段上植树(两端都栽)
植树问题教学的重点是解决点和间隔的关系,建立相应的模型。但是当数据比较大时,不利于学生发现规律,所以教材编排上体现了化繁为简和建模的思想。
例1是关于一条线段上的植树问题并且两端都要栽树的情况,让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历解决问题的过程。(1)渗透化繁为简的思想,经历解决问题的过程
通过学生的话“100 m太长了,可以先用简单的数试试”渗透化繁为简的解决问题的方法,接下来的编排渗透了“猜测—探索—归纳—应用”的解决问题的策略。(2)重点培养学生借助线段图建立数学模型的能力
教材呈现学生用画示意图或线段图的方法帮助思考,通过观察两端都栽树的示意图或线段图,把分割点和栽树的棵树一一对应起来,发现并初步总结栽树的棵数与间隔数之间的关系。再让学生在30 m、35 m上加以验证,从而建立起一条线段两端都栽这类植树问题的数学模型。从而找到解决问题的方法。
2.例2:一条线段上植树(两端都不栽)例2是关于一条线段的植树问题的另一种情况,即两端都不栽树的情况。教材继续通过画线段图的方法帮助学生分析、理解,找出一般规律来解决问题,突出学生的迁移能力培养。
有了例1的基础,可以放手让学生独立思考。学生自然会想到借助线段图来分析,教材呈现学生画线段图进行分析,发现当两端都不栽树时,植树的棵数比间隔数少1,然后利用发现的规律解决例题的问题。
一端栽另一端不栽的情况放在“做一做”第2题让学生自己探究。通过画线段图,可以与例
1、例2的对比来获得对这一基本模型的理解,同时运用发现的规律解决要求的问题。
3.例3:封闭曲线上植树(1)突出画图的策略
例3是在一条首尾封闭的曲线上植树的问题。编排思路和例1相同,继续渗透化繁为简的思想和画图的策略。借助图示探索规律,建立模型。
(2)注重模型的对比与沟通
通过小精灵的问题“如果把圆拉直成线段,你能发现什么?”启发学生联系已有的知识找出这种植树问题的规律,即栽树的棵树正好等于间隔数,也就相当于一条线段上植树的一端栽另一端不栽的情况,渗透转化的数学思想。
五、教学建议
1.经历建模的过程,感悟思想方法
“数学广角”的教学目的主要是让学生体验知识的形成过程和感悟数学思想方法。具体到本单元,教学时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。比如例1的教学,可以让学生经历猜想、实验、归纳、推理的过程,渗透简单的化归、数形结合、一一对应、模型、推理等数学思想,激发学生学习数学的兴趣。
2.突出画图(线段图)的策略
几何直观是课标的核心概念之一,帮助学生养成画图的习惯是非常重要的。本单元通过画示意图或线段图来解决植树问题,可以更直观理解、更好地发现规律,建立模型,找出解决问题的方法。
另外,学生在学习中容易将两端都栽、一端栽另一端不栽、两端都不栽三种情况弄混。事实上,学生不用记每种模型的结论,遇到问题,只要画个线段图,问题就迎刃而解了,从而体会到画图策略的价值。
第五篇:数学广角《植树问题》说课稿
数学广角《植树问题》说课稿
思南县 田儒翠
一、说教材
“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
二、说教学目标 知识性目标:
1、利用学生熟悉的生活素材,通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2、通过小组合作、交流,使学生发现并理解段数与课树之间的规律,并利用规律解决一些实际问题。能力目标:
1、让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。
2、渗透数形结合的思想,培养学生借助实物、图形解决问题的意识。情感目标:
通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
三、说教学重点、难点
教学重点:引导学生发现植树棵树与间隔数之间的关系并能应用规律解决问题。
教学难点:理解间隔与棵树之间的规律(总长*间距=间隔数 间隔数+1=植树棵数)并能运用规律解决问题。
四、说教法、学法
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到点拨、渗透,引导的作用。在本节课中,我力图体现学生的主体地位,发挥学生的主观能动性。因此,我采用自主探究式学习模式,学生利用画线段图”—探究发现规律—应用规律实践的活动过程,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
五、说教学过程
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,我设计了如下教学程序:
(一)、课前铺垫:
我设计了找手指上的数学。从我们熟悉的手中寻找数学问题,用意在于先突破教学中的知识点,理解间隔,间隔数,初步感知间隔数与物体个数的关系,并且起到规范学生语言的作用,使学生在轻松的活动中为新课的学习作铺垫,同时渗透数学从生活中来,数学离不开我们生活的道理。
(二)、创设情境,生成问题。
我从美化环境和净化化空气的‘植树活动’揭示课题:植树问题。从而让学生明白植树活动里面也藏着许多数学问题。这样设计既要激发学生的学习兴趣,也要让学生感受到数学问题原本就来源于生活实践,形成积极的情感态度。
(三)、探索交流,解决问题。
1、学生动手操作,发现规律:
这一环节是本节课的重点,植树问题中隐藏着间隔与棵数之间的关系,间隔数与棵树的关系其实也是生活中一些类似问题的关系问题,在这里我先让学生观擦植树的情景,然后小组合作动手操作,通过线段图来理解题意,找到规律,为后面的解决问题做好了铺垫。
2、学生汇报,初步建模。
大多数学生在这一环节意识到棵数与间隔数之间的关系,但教师不要急于求成,再让学生利用电教手段的直观形象性激发学生的学习动机,调动学生学习积极性,并引导学生把关注焦点聚集到棵数与间隔的关系上来,使学生能轻而易举地发现植树棵数比间隔数多1,间隔数比植数棵数少1。并总结: 总长÷间距=间隔数 间隔数+1=植树棵数
老师这时再提出让学生从其他数据中找规律,从而知道间隔数=总长÷间距,为例1后面的内容学习打下了坚实的基础。
3、利用模型,解决问题。
我利用电教手段,抓住教材的重点、难点,让学生看表总结规律,既避免了用语言表达的困难,又节省了教学时间,使学生一目了然,起到化难为易的效果,使学生豁然开朗。这时的例1我放手让学生尝试分析,独立列式,交流反馈,明白算理,巩固结论,学生研究成果被认可,学生也有了一种成就感,从而增强了学生学习数学的信心。
4、图文并茂,回归生活。
这环节我设计了生活中很多的植树问题,让学生明白了现实生活中与“植树问题”类似的有很多:如安装路灯、花坛摆花、锯木头、走楼梯等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法和策略,让同学们在快乐中轻松地学习知识,使学生感受到数学知识源于生活、用于生活,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣。
(四)、巩固应用,内化提高: 这环节我安排了三组生活中的实际问题,练习题设计有层次性,包括填空,选择,应用,充分体现本节课的重点,难点,并且我用课件展示出图文,学生带着浓厚的兴趣和高涨的积极性,解决了实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,感受了日常生活中处处有数学、体验学习成功的喜悦,并且激发了学生学习数学的兴趣。
(五)、回顾整理,反思提升:
这环节我设计了先回顾这节课所学知识,再提出植树问题,为下节课的继续探究做好了进一步的铺垫。
六、板书设计:
植树问题
两端都种树: 总长÷间距=间隔数 间隔 + 1= 棵数
100÷5+1=21(棵)
七、教学效果预设:
我以为自己设计的教案考虑到了学生的生活经验,贴合学生实际,通过充分体验,动手操作、课件数形结合的演示,小组合作交流等有效的学习手段,让学生有夯实的学习基础;重视了数学思维能力的培养,思想方法的渗透,学生们应该是能够掌握的。但由于本人水平有限,肯定有很多不尽人意的地方,恳请老师们提出宝贵意见,我会虚心的接受的,在这里先谢谢你们,谢谢大家。
2014年10月