设计理念:
笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。
在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。
教学目标:
1、知识与能力目标:
通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。
2、过程与方法目标:
使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、情感态度与价值观目标:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重点:
理解“两端都不种”的植树问题的规律
教学难点:
应用“两端不种”的植树方法去解决生活中类似的问题
教学过程:
一、创设情境,发现问题
同学们学过植树的知识吗?请大家来帮忙解决下面这个问题
房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?
误区:60÷10=6(个)
6+1=7(棵)
两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题
(设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)
二、化繁为简,经历猜测、验证的过程探索规律
师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别
讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样
师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?
猜测:棵数=间隔数+1
是不是这样呢,我们来验证一下(植树)
两端不种
棵数=间隔数+1
(设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)
二、深入学习应用“两端不栽”的规律
1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?
2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)
②师:同学们讨论一下解决这道题要注意什么?
课件闪烁:将“两旁栽树”,“两端不用栽”
学生展示:60÷3=20(个)
20-1=19(棵)
19×2=38(棵)
答:一共要栽38棵树。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
(设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)
三、回归生活,实际应用
1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?
20÷4=5(个)
5—1=4(面)(面数=间隔数-1)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?
4-1=3(层)(层数=楼数-1)
3×26=78(级)
(问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)
3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)
5-1=4(次)(次数=段数-1)
4×8=32(分)
(设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)
四、全课总结
通过今天的学习,你有哪些收获?
(设计意图:让学生回顾本节知识达到及时巩固的作用)
五、板书设计
植树问题(两端不种)
棵数=间隔数生活中
间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、
学生展示:60÷3=20(个)上楼:层数=楼数-1
20-1=19(棵)锯树木:次数=段数-1
19×2=38(棵)
答:一共要栽38棵树。
(设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)
《数学广角——植树问题》教学设计
教学过程:
一、初步感知间隔的含义
1、上课前我们猜个谜语,好吗?
(课件呈现:一棵小树5个杈,不长叶子不开花。能写会算还会画,天天干活不说话)师:谁来说说?
师:(课件出示)你们可真聪明!在我们手上也隐藏了数学奥秘,同学们想知道吗?看着这个手,你从中得到了什么数字?
生:5,5个手指。师:很好,还有吗?
生:4,4个空格(缝隙)。
师:观察的很仔细!在数学上我们把这样的空格叫间隔,4就是间隔数。(板书:间隔数)2.师:生活中到处都存在间隔,(课件出示图片)比如人民大会堂前两根柱子间有间隔,栏与栏间有间隔,树与树间也有间隔……
师:数学家把这些间隔现象称为植树问题。这节课我们就一起来探究一些简单的植树问题。(板书:植树问题)
二.新授
(一)、引导探究,发现“两端要种”的规律
师:(课件出示)请看,这是植树要求,谁来说说 “两端”是什么意思?
(学生回答。教师实物演示:指一指哪里是这根小棒的两端;如果把这根小棒看作是这条小路,在这条小路的两端要种就是在这根小棒的两头要种。)
现在请同学们自己试着解决这个问题,完成后与同桌相互交流。(学生回答)
师:现在出现了这几种答案,到底哪种答案是正确的呢?我们可以通过画图模拟实际种一种。但从图上一棵一棵种到100米,这样做太麻烦其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法——复杂问题简单化。用简单的例子来研究它们的规律,然后用找到的规律来解决原来的问题。大家想用这种方法试吗?
1、我们可以先在短距离的路上种一种,看一看
A、先种20米,每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(出示课件)
B、跟上面一样,每隔4米种一棵,这次你又分了几段,种了几棵?(出示课件)
C、任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?(抽生回答)
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)
是怎样求出间隔数的呢?(观察课件)我们看20米是什么? 5米又是什么? 板书:间隔数=全长÷间隔距离
师:如果知道间隔数和间隔距离能求出全长吗? 生汇报师板书:全长=间隔数×间隔距离
2、应用规律,解决问题。(1)、课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?(2)、解决实际问题(出示课件)A、出示题目
B、相互间比一比,看谁做得又对又快 C、班内交流 小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
(二)、合作探究,“两端不种”的规律
1、猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1 师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2、独立探究,合作交流。
3、展示小组研究成果,发现规律,验证前面的猜测。小结规律:现在老师和同学们一起来种一种(出示课件)。同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:
板书棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4、做一做。
大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁种树,相邻两棵树之间的距离是3米。一共要栽多少棵树?
问:这里没有告诉两端不种,你是从那里发现的?
(三)、回归生活,实际应用(1)、一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成)问:为什么要—1?这相当于今天学习的植树问题中的那种情况?(2)、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?(3)、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
(4)、两个房子间的距离是80米,如果每隔4米放一把椅子,一排能摆几把?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
三、课堂总结 :
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课后可以查阅有关的资料继续研究。比如:关与一端种,一端不种的植树问题。
四、课后探究:
学校有一条长600米的小路,准备在小路的两旁栽树。每隔4米栽一棵(一端种,一端不种)共需要多少棵树?