第一篇:用一元一次方程解行程问题教案
《用一元一次方程解行程问题》教学设计
许小梅
教学目标:
知识技能:学会用图示法分析、解决实际问题中的行程问题;能准确地从实际问题中找到相等关系,并列方程解应用题。
数学思考:利用图示法解决实际问题中相遇问题和追击问题,能够分析出是属于哪一类问题,学会归类解决。
问题解决:经历运用方程解决实际问题的过程,体会图示法对分析行程问题的优越性,体会方程是刻画现实世界的有效数学模型。
情感态度:通过教学,让学生初步体会代数方法的优越性;体会数形结合的思想;培养应用数学意识,自觉反思解题过程的良好习惯。教学重点:
运用图示法寻找问题中的相等关系,列方程解决行程中的相遇和追击问题。教学难点:
列方程解决行程中的相遇和追击问题。教学过程:
一、复习提问,揭示目标:
速度、路程、时间之间的关系?(利用这些知识的复习为后面的应用题提供依据。)
这节课我们就来学习关于这三个量的应用题—行程问题。
二、例题展示,解决问题
1.例1:西安站和武汉站相距1500km,一列慢车从西安开出,速度65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
(由老师引导学生从实际问题中抽象出数学模型,从示意图分析,并解答,向学生呈现一个完整的分析、解决行程问题的过程,让学生利用形象的图示理解相遇问题,在解决此类问题时头脑中能形成映像,能够画出示意图解决。)
通过学习让学生对相遇问题中的各量的关系有了认识。
2.延伸拓展
西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为87km/h,若两车相向而行,慢车先开30分钟,快车行使几小时后两车相遇?
先让学生自己分析后,同学讨论试着画出图分析出等量,列出方程,教师再借助多媒体加深学生的理解。理解相遇问题的不同类型
归纳:相遇问题 甲路程+乙路程=总路程
3.例2:两匹马赛跑,黄色马的速度是6m/s,棕色马的速度是7m/s,如果让黄马先跑5m,棕色马再开始跑,几秒后可以追上黄色马?
(借助多媒体中图像让学生理解题意,解答)
利用此例题让学生对追击问题中的各量之间的关系加深理解,找出等量关系,初步建模。
三、自主演练,巩固提高
练习:小明和小华家相距300米,两人同时从家里出发去学校,小明在小华后面,小明每分钟走160米,小华每分钟走100米,问小明几分钟追上小华?
(要求学生画出示意图,可以同学讨论)
加深对追击问题的理解,能够解决此类问题
四、颗粒归仓
谈谈你的收获。
五、作业布置:
1. 好马每天走240里,劣马每天走150里,劣马先走12天,好马几天可以追上劣马?
2. 两辆汽车从相距298千米的两地同时出发相向而行,甲车的速度比乙车速度的2倍还快20千米/小时,半小时后两车相遇,两车的速度各是多少?
通过练习对相遇问题和追击问题有更深的认识,训练学生的理解能力。
第二篇:一元一次方程说课稿-行程问题
各位评委,各位老师大家晚上好,我今天说课的内容是实际问题与一元一次方程中的行程问题。我将从教材分析、教学目标、教法学法、教学过程以及板书设计五个方面进行今天的说课。
首先一,教材分析
教材内容,实际问题与一元一次方程是人教版七年级上册第三章第四节的内容,教材分别介绍了一元一次方程在配比配套问题,工程问题,行程问题,销售问题,和差倍分问题等几大方面的应用,而行程问题是其中较为重要以及常见的内容之一。
其次,教材的地位与作用:一元一次方程的应用是在学生已经初步具备代数知识,并且已经掌握了一元一次方程及其解法这些内容之后安排的。教材这样的安排既为列一元一次方程解应用题做了必要的准备,也分解了一元一次方程解应用题的难点。
学生在小学已经学过了简单的行程问题,已经掌握了路程、速度、时间三个基本量之间的基本关系,初中,运用一元一次方程这一手段再次对行程问题进行分析,既巩固了小学的知识,又为后面学习二元一次方程组及分式方程奠定了坚实的基础。本节课在整个中学数学学习中起到了一个承上启下的重要作用。教学重难点
根据对学生以及教材的一个分析,我确立本节课的教学重点是:正确寻找相等关系 难点为:正确理解相等关系,并把关系中的各个量用未知数表示。
二、教学目标
知识与技能方面的目标是:会将实际问题抽象成线段图并找到等量关系列出方程。
过程与方法方面的目标是:通过对一元一次方程解行程问题的探究,渗透数形结合的数学思想,学生提高了观察、归纳、抽象的能力力及推理论证能力.
情感态度价值观方面的目标是:创造活跃有趣的情境,让他们在活动中获得成功的体验,培养探索精神,树立学习的信心。
三、教法学法
按照新课标的要求,教室只是课堂中的组织者引导者以及合作者。而有效教学的唯一评价就是学生所发挥的主观能动性,所以我确立本节课的教法为开放式探究法、启发式引导法,小组合作讨论法以及反馈式评价法。确立学法为:自主探究法,观察发现法合作交流法以及归纳总结法。整堂课创设一种有利于他们主动学习和发展的环境和条件。
四、教学过程 1.创设情境
首先,播放一个狮子捕食斑马的小视频,让学生看到追击的这一个过程,从而自然而然的想到今天所学习的内容即行程问题。其次,通过回忆小学所学过的简单的行程问题强调三个基本公式,路程=速度*时间。速度=路程/时间,以及时间=路程/速度 2.探索新知
第三篇:行程问题--一元一次方程经典应用题
行程问题
一、相遇问题:
路程=速度×时间
甲、乙相向而行,则: 甲走的路程+乙走的路程=总路程
二、追及问题:甲、乙同向不同地,则: 追者走的路程=前者走的路程+两地间的距离
三、环形跑道问题:
1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题
1、飞行问题,基本等量关系:
顺风速度=无风速度+风速 逆风速度=无风速度-风速
顺风速度-逆风速度=2×风速
2、航行问题,基本等量关系:
顺水速度=静水速度+水速 逆水速度=静水速度-水速
顺水速度-逆水速度=2×水速
一、相遇问题
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度
3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速度是摩托车的1/3倍,求摩托车和自行车的速度。
4、A,B两村相距2800米,小明从A村出发向B村步行5分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130米,小明每分钟步行多少米?
5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?
二、追及问题
1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?
(2)若两人同时同向出发,甲在前,乙在后,问乙多少
小时可追上甲?
2、一个自行车队进行训练,训练时所有队员都以35千米
/时的速度前进,突然,1号队员以45千米/时的速度独自
行进,行进10千米后掉转车头,仍以45千米/时的速度
往回骑,知道与其他队员会和。1号队员从离队开始到与
队员重新会和,经过了多长时间?
3、一队学生去郊外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通
知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追去。问通讯员用多少时间可以追上学生队
伍?
三、环形跑道
1、一条环形跑道长400米,甲每分钟行550米,乙每分
钟行250米,甲乙两人同时同地同向出发,问多少分钟后
他们再相遇?
四、航行问题
1、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水
比顺水多30分钟,已知轮船在静水中速度是每小时26千
米,求水流的速度.2、一艘轮船从甲地顺流而行9小时到达乙地,原路返回
需要11小时才能到达甲地,已知水流速度为2千米/时,求轮船在静水中的速度。
3、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求
两城市间距离
五、火车过桥
1、某桥长500米,一列火车从桥上通过,测得火车从开
始上桥到完全通过共用30秒,而整列火车完全在桥上的时间为20秒,求火车的速度和长度。
2、一列快车和一列慢车相向行驶在平行的两条轨道上,快车长150米,慢车长200米,坐在慢车上的乘客见快车
驶过窗口的时间是6秒,问坐在快车上的乘客见慢车驶过
窗口的时间是几秒?
3、甲乙两列火车,长分别为144米和180米,甲车比乙车每秒多行4米,两列火车相向而行,从相遇到错开需要
9秒,问两车的速度各是多少?
4、火车用26秒的时间通过一个长256米的隧道,(即从车头进入入口到车尾离开出口),这列火车又以16秒的时
间通过了长96米的隧道,求列车的长度。
第四篇:解一元一次方程教案
解一元一次方程
(二)——去括号与分母
一、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
二、教学重难点:
重点:去分母解方程。
难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
三、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
四、教学过程:
1、创设情境,提出问题
问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。问题2:解方程5(x-2)=8 解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知(1)情境解决
问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.问题3:怎样使这个方程向x=a的形式转化呢? 6x+6(x-2000)=150000 去括号
6x+6x-12000=150000 移项
6x+6x=150000+12000 合并同类项 12x=162000 系数化为1 x=13500 问题4:本题还有其他列方程的方法吗? 用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解决)
归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:3x—7(x—1)=3—2(x+3)。解:去括号,得3x—7x+7=3—2x—6 移项,得3x—7x+2x=3—6—7 合并同类项,得—2x=—10 系数化为1,得x=5
3、变式训练,熟练技能(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)2(x+1)+3(x+2)-3=-4(x+3).(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展(1)本节课你学习了什么?(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么? 可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。②主要用到的思想方法是转化思想。
③注意的问题:括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:课本第98页习题3.3第1、2题。(2)选做题:
①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
五、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习。强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
六、板书设计
解方程
3x—7(x—1)=3—2(x+3)。
解:去括号得,3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7 合并同类项,得—2x=—10 系数化为1,得x =5
第五篇:解一元一次方程教案
解一元一次方程(去括号)教学设计
一、本节课的主要内容:
解含有括号的一元一次方程以及运用一元一次方程模型解决实际问题.本节课是在学生会用移项、合并同类项解简单的一元一次方程的基础上,进一步学习利用去括号化简一元一次方程,去括号是今后学习化简代数式、分解因式、配方法等知识的重要环节.二、学习目标:
1.探索含有括号的一元一次方程的解法,掌握解一元一次方程的一般步骤,并体会解方程中的化归思想.2.根据具体问题中的数量关系,列出方程,将实际问题转化为数学问题;
3.增强数学的应用意识,激发学习数学的热情.三、重难点
重点:建立一元一次方程模型以及解含有括号的一元一次方程.难点:如何正确地去括号以及实际问题中的相等关系的寻找和确定.四、教学过程
(一)、复习导入
运用所学知识解下列方程:(1)3X+5=4X+1(2)9-3y=5y+5(学生独立完成后,师生共同交流复习学过的知识)
(二)、探索新知 例
1、解下列方程
(1)3X-7(X-1)=3-2(X+3)(2)2X-(X+10)=5X +2(X-1)思考:怎样解这两个方程,这两个方程与方程 3X+5=4X+1 9-3y=5y+5 有什么不同?
(教师引导学生解决问题的方法,即县去括号,再向X=a形式的方程化归,师生共同回忆去括号的方法)解:3X-7(X-1)=3-2(X+3)3X-7X+7 =3-2X-6 3X-7X+2X=3-6-7-2X=-10 X=5
(三)、练习巩固
教材第95页练习(1)、(2)
(四)、实际应用
问题1:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000 kW·h(千瓦·时),全年用电15 万 kW·h.这个工厂去年上半年每月平均用电是多少?(学生讨论交流解决,然后口述,教师板书)
(五)、小结与作业
小结:本节课你有哪些收获? 作业:习题3.3 第1题、(3)(4)第2题、(3)(4)第8题
(六)、板书设计
解一元一次方程
——去括号
方程中有带括号的式子时,要先去括号化简。即:去括号
移项
合并同类项
系数化为1