小学六年级奥数教案—28运筹学初步二(五篇模版)

时间:2019-05-15 07:38:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学六年级奥数教案—28运筹学初步二》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学六年级奥数教案—28运筹学初步二》。

第一篇:小学六年级奥数教案—28运筹学初步二

小学六年级奥数教案—28运筹学初步二

本教程共30讲

运筹学初步

(二)本讲主要研究分配工作问题。

实际工作中经常会碰到分配工作的问题。由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。我们希望通过合理分配工作,使所用时间最少或花费代价最小。

例1 甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。两厂合并后,每月(按30天计算)最多能生产多少套衣服?

分析与解:应让善于生产上衣或裤子的厂充分发挥特长。甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。

因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。

设乙厂用x天生产裤子,用(30-x)天生产上衣。由甲、乙两厂生产的上衣与裤子一样多,可得方程

960+720÷18×x=720÷12×(30-x),960+40x=1800-60x,100x=840,x=8.4(天)。

两厂合并后每月最多可生产衣服

960+40×8.4=1296(套)。

例2 某县农机厂金工车间共有77个工人。已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。每3个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。问:分别安排多少人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?

分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。

设每天加工乙种部件x个,则加工甲种部件3x个,丙种部件9x个。从而

加工甲、乙、丙三种部件应分别安排12人、5人和60人。

例3 有4辆汽车要派往五个地点运送货物,右图○中的数字分别表示五个地点完成任务需要的装卸工人数,五个地点共需装卸工20人。如果有些装卸工可以跟车走,那么应如何安排跟车人数及各点的装卸工人数,使完成任务所用的装卸工总人数最少?

分析与解:可用试探法。因为五个地点中需装卸工最多的是5个人,所以如果每辆车跟5个工人,那么每辆车到达任何一个地点,都能正常进行装卸。由此得到,跟车人数的试探范围是1~5个人。

若每车跟车5人,则各点不用安排人,共需20人;

若每车跟车4人,则原来需5人的点还需各安排1人,共需18人;

若每车跟车3人,则原来需5人的点还需各安排2人,原来需4人的点还需各安排1人,共需17人;

同理可求出,每车跟车2人,共需18人;每车跟车1人,共需19人。

可见,安排每车跟车3人,原来需5人的两个点各安排2人,原来需4人的点安排1人,这时所用的装卸工总人数最少,需17人。

在例3中,我们采用试探法,逐一试算,比较选优。事实上,此类题目有更简捷的解法。假设有m个地点n辆车(n≤m),m个地点需要的人数按从多到少排列为

A1≥A2≥A3≥…≥Am,则需要的最少总人数就是前n个数之和,即

A1+A2+…+An。

这时每车的跟车人数可以是An+1 至An 之间的任一数。具体到例3,5个点4辆车,5个点中需要人数最多的4个数之和,即5+5+4+3=17(人)就是需要的最少总人数,因为A4=A5=3,所以每车跟车3人。若在例3中只有2辆车,其它条件不变,则最少需要 5+5=10(人),因为A2=5,A3=4,所以每车跟车5人或4人。当每车跟车5人时,所有点不再安排人;当每车跟车4人时,需要5人的两个点各安排1人,其余点不安排人。

注:如果车辆数大于地点数,即n>m,则跟车人数是0,各点需要人数之和就是总共需要的最少人数。

例4 有17根11.1米长的钢管,要截成1.0米和0.7米的甲、乙两种长度的管子,要求截成的甲、乙两种管子的数量一样多。问:最多能截出甲、乙两种管子各多少根?

分析与解:要想尽量多地截出甲、乙两种管子,残料应当尽量少。一根钢管全部截成1.0米的,余下0.1米,全部截成0.7米的,余下0.6米。如果这样截,再要求甲、乙管数量相等,那么残料较多。

怎样才能减少残料,甚至无残料呢?我们可以将1.0米的和0.7米的在一根钢管上搭配着截,所得残料长度(单位:米)见下表:

由上表看出,方法3和方法10没有残料,如果能把这两种方法配合起来,使截出的甲、乙两种管子数量相等,那么就是残料最少的下料方案了。

设按方法3截x根钢管,按方法 10截 y根钢管。这样共截得甲管(9x+2y)根,乙管(3x+13y)根。由甲、乙管数量相等,得到

9x+2y=3x+13y,9x-3x=13y-2y,6x=11y。

由此得到x∶y= 11∶6。用方法3截11根钢管,用方法10截6根钢管是符合题意的截法,共可截得甲、乙管各

9×11+2×6=111(根),或3×11+13×6=111(根)。

例5 给甲、乙二人分配A,B两项工作,他们完成这两项工作所需要的时间如下表:

怎样分配工作才能使完成这两项工作所需的总时间最少?

分析与解:因为不同的人要做不同的工作,所以上表中不同行、不同列的两数之和对应一种方案,共两种:

(1)甲做 A、乙做 B,需要 7+6=13(时);

(2)甲做 B、乙做 A,需要 4+8=12(时)。

显然后一种方案优于前一种方案。

为了能够处理更复杂的问题,我们将上例的数量关系尽量简化。

如果把表中第一行的两数都减去该行的最小数7,变成0和1,那么上面(1)(2)各式也各减少7,不影响它们之间的大小关系,即不影响最优方案的确定。

同理,第二行都减去该行的最小数4,变成0和2,也不影响最优方案的确定。

经上述变换后,原表变成左下表:

此时,再将第二列都减去该列的最小数1,变成0和1,同样不影响最优方案的确定,原表变为右上表。

不同行、不同列的两个数之和代表一种方案,因为

0+0<0+1,所以最优方案为乙做A、甲做B。上面的化简过程可表示为:

总结上面的方法:对于n个人n项工作的合理分配问题:

(1)先将各行都减去该行中最小的数;

(2)再将各列都减去该列中最小的数;

(3)最后选择不在同一行,也不在同一列的n个0即可。

在实施上述变换后,如果仍选不出n个不同行也不同列的0,因为我们的目的是选取一组不同行、不同列的n个数,使这n个数之和尽量小,既然得不到n个0,可用表中最小的数代替0(见例6)。

例6 给甲、乙、丙三人分配A,B,C三项工作,他们完成这三项工作的时间如下表:

完成这三项工作所需总时间最少是多少?

分析与解:

因为没有三个不同行也不同列的0,我们用右下角的1代替0,此时,○内的三个数就是我们要找的最佳方案,即甲做B、乙做A、丙做C。所需总时间为

9+7+9=25(时)。

练习28

1.某种健身球由一个黑球和一个白球组成一套。已知两个车间都生产这种

现在两个车间联合起来生产,每月最多能生产多少套健身球?

2.某车间有铣床5台、车床3台、自动机床1台,生产一种由甲、乙两种零件各1个组成的产品。每台铣床每天生产甲零件10个,或者生产乙零件20个;每台车床每天生产甲零件20个,或者生产乙零件30个;每台自动机床每天生产甲零件30个,或者生产乙零件80个。这些机器每天最多可生产多少套产品?

3.车过河交渡费3元,马过河交渡费2元,人过河交渡费1元。某天过河的车、马数目的比为2∶9,马、人数目的比为3∶7,共收得渡费945元。问:这天渡河的车、马、人的数目各多少?

4.有4辆汽车要派往七个地点运送货物,右图中的数字分别表示这七个地点完成任务需要的装卸工人数。如果装卸工可以跟车,那么最少要安排多少名装卸工才能完成任务?

5.有一批长4.3米的条形钢材,要截成0.7米和0.4米的甲、乙两种毛坯,要求截出的甲、乙两种毛坯数量相同。如何下料才能使残料最少?

6.用10米长的钢筋做原材料,截取3米和4米长的钢筋各100根,至少要用多少根原材料?

7.给甲、乙、丙分配A,B,C三项工作,他们完成这三项工作的时间如下表。怎样分配工作才能使完成这三项工作所需总时间最少?最少用多少时间?

答案与提示 练习28

1.600套。

因为450<900,所以应安排甲车间专门生产黑球,剩下的由乙车间生产。乙车间生产450个白球后,剩下的时间还能生产白球900-450=450(个),因为乙车间生产1个黑球与生产2个白球的时间相同,450÷(1+2)=150,所以这段时间还能生产黑、白球各150个。

两车间联合生产每月最多生产(450+150)=600(套)。

2.100套。

甲零件。安排自动车床专门生产乙零件,车床专门生产甲零件,铣床两种零件都生产,并使其配套。

自动车床一天生产乙零件80个,车床一天生产甲零件20×3=60(个)。铣床一天可生产10×5=50(个)甲零件,补上车床与自动车床的差后,还有生产50-20=30(个)甲零件的时间,这个时间可生产甲、乙零件各20个。

所以,每天最多生产80+20=100(套)产品。

3.42辆车,189匹马,441个人。

解:这天过河的车、马、人的数量之比是2∶9∶21。以2车9马21人为一组,每组收渡费

3×2+2×9+1×21=45(元)。

这天共渡河945÷45=21(组),由此得到,这天渡河的数量为

车:2×21=42(辆);

马:9×21=189(匹);

人:21×21=441(个)。

4.26人。提示:每车跟5人。

5.解:每根钢材有下表所示的7种截法:

无残料的有第2和第6两种方法。用第2种方法的条形钢材数量与用第6种方法的条形钢材数量之比是8∶3,就可使截出的甲、乙两种毛坯的数量相同,且无残料。

6.75根。

解:有三种截法:

(1)截成3米、3米、4米,无残料;

(2)截成3米、3米、3米,残料1米;

(3)截成4米、4米,残料2米。

尽量用方法(1)。50根用方法(1),截出3米的100根,4米的50根,还差50根4米的。再用方法(2)截25根原材料,截出50根4米的。共用原材料50+25=75(根)。

7.20时。

解:

由此得到,丙做A,甲做B,乙做C。所需时间为6+6+8=20(时)。

第二篇:小学六年级奥数教案—29运筹学初步三

小学六年级奥数教案—29运筹学初步三

本教程共30讲

运筹学初步

(三)本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题

例1 星期天妈妈要做好多事情。擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。妈妈干完所有这些事情最少用多长时间?

分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。

例1 告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题

例2 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?

分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。总的占用时间为

(10×3+15×2+24)+(12×2+20)=128(分)。

按照上面的安排,从第一人开始理发到五个人全部理完,用了 10+15+24=49(分)。如果题目中再要求从第一人开始理发到五人全部理完的时间最短,那么做个调整,甲依次给需10,12,20分钟的人理发,乙依次给需15,24分钟的人理发,总的占用时间仍是128分钟,而五人全部理完所用时间为

10+12+20=42(分)。

例3 车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。现有两名工作效率相同的修理工,怎样安排才能使得修复的时间最短且经济损失最少?

分析与解:因为(18+30+17+25+20)÷2=55(分),经过组合,一人修需18,17和20分钟的三台,另一人修需30和25分钟的两台,修复时间最短,为55分钟。

上面只考虑修复时间,没考虑经济损失,要使经济损失少,就要使总停产时间尽量短,显然应先修理修复时间短的。第一人按需17,18,20分钟的顺序修理,第2人按需25,30分钟的顺序修理,经济损失为

5×[(17×3+18×2+20)+(25×2+30)]=935(元)。

3.最短路线问题

例4 右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分)。小明从A到B最快要几分钟?

分析与解:我们采用分析排除法,将道路图逐步简化。

从A到O有两条路,A→C→O用6分钟,A→F→O用7分钟,排除后者,可将FO抹去,但AF不能抹去,因为从A到B还有其它路线经过AF,简化为左下图。

从A到E还剩两条路,A→C→G→E用12分钟,A→C→O→E用10分钟,排除前者,可将CG,GE抹去,简化为右上图。

从A到D还剩两条路,A→C→O→D用12分钟,A→H→D用13分钟,排除后者,可将AH,HD抹去,简化为左下图。

从A到B还剩两条路,A→C→O→E→B用17分钟,A→C→O→D→B用16分钟,排除前者,可将OE,EB抹去,简化为右上图。

小明按A→C→O→D→B走最快,用16分钟。

4.场地设置问题

例5 下图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米)。现在要在五村之中选一个村建立一所小学。为使所有学生到学校的总距离最短,试确定最合理的方案。

分析与解:我们采用比较学校设在相邻两村的差别的方法。例如比较 A和 C,若设在 A村,则在 C村一侧将集结 20+20+35+50=125(人),这些人都要走 AC这段路;若设在C村,则只有40人走AC这段路。对这两种方案,走其余各段路的人数完全相同,所以设在C村比设在A村好。

从上面比较A和C的过程可以看出,场地设置问题不必考虑场地之间的距离,只需比较两个场地集结的人数多少,哪个场地集结的人数越多,就应设在哪。

同理,经比较得到C比B好,D比E好。最后比较C和D。若设在 C村,则在 D村一侧将集结 35+ 50= 85(人);若设在 D村,则在C村一侧将集结 40+20+20=80(人)。因为在D村集结的人数比C村多,所以设在D村比C村好。

经过上面的比较,最合理的方案是设在D村。

不难发现,本题的解法与第27讲例2的解法十分类似。

例6 某天然气站要安装天然气管道通往位于一条环形线上的A~G七个居民区,每两个居民区间的距离如下图所示(单位:千米)。管道有粗细两种规格,粗管可供所有7个居民区用气,每千米8000元,细管只能供1个居民区用气,每千米3000元。粗、细管的转接处必须在居民区中。问:应怎样搭配使用这两种管道,才能使费用最省?

分析与解:在长度相同的情况下,每根粗管的费用大于2根细管的费用,小于3根细管的费用,所以安装管道时,只要后面需要供气的居民区多于2个,这一段就应选用粗管。从天然气站开始,分成顺时针与逆时针两条线路安装,因为每条线路的后面至多有两个居民区由细管通达,共有7个居民区,所以至少有3个居民区由粗管通达。因为长度相同时,2根或1根细管的费用都低于1根粗管的费用,所以由粗管通达的几个居民区的距离越短越好,而顺时针与逆时针两条线路未衔接部份的距离越长越好。经过计算比较,得到最佳方案:

(1)天然气站经G,F,E到D安装粗管,D到C安装2根细管,C到B安装1根细管;

(2)天然气站到A安装1根细管。

此时总费用最少,为

8000×(3+12+8+6)+3000×2×5+3000×(9+10)=319000(元)。

练习29

1.早饭前妈妈要干好多的事:烧开水要15分钟,擦桌椅要8分钟,准备暖瓶要1分钟,灌开水要2分钟,买油条要10分钟,煮牛奶要7分钟。如果灶具上只有一个火,那么全部做完这些工作最少需要多少时间?怎样安排?

2.甲、乙、丙三名车工准备在同样效率的3个车床上加工七个零件,各零件加工所需时间分别为4,5,6,6,8,9,9分钟,三人同时开始工作。问:加工完七个零件最少需多长时间?

3.车间里有5台车床同时出现故障。已知第一台至第五台修复的时间依次为15,8,29,7,10分钟,每台车床停产一分钟造成经济损失5元。问:(1)如果只有一名修理工,那么怎样安排修理顺序才能使经济损失最少?(2)如果有两名修理工,那么修复时间最少需多少分钟?

4.下页左上图是一张道路图,每条路上的数是小王走这段路所需的时间(单位:分)。小王从A到B,最快需要几分钟?

5.东升乡有8个行政村。分布如右上图所示,点表示村庄,线表示道路,数字表示道路的长(单位:千米)。现在这个乡要建立有线广播网,沿道路架设电线。问:电线至少要架多长?

6.有七个村庄A1,A2,„,A7分布在公路两侧(见下图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?

7.有一个水塔要供应某条公路旁的A~F六个居民点用水(见下图,单位:千米),要安装水管,有粗细两种水管,粗管足够供应6个居民点用水,细管只能供应1个居民点用水,粗管每千米要7000元,细管每千米要2000元,粗细管怎样互相搭配,才能使费用最省?费用应是多少?

答案与提示练习29

1.22分。

提示:先烧开水后煮牛奶共需22分,其它事情可以在这个期间做,顺序是买油条,准备暖瓶,擦桌椅(水开时暂停,煮上奶),灌开水,继续擦桌椅。

2.17分。

3.(1)780元;(2)36分。

提示:(1)按修复时间需7,8,10,15,29分的顺序修理;(2)一人修需7分和29分的,另一人修需8,10,15分的。

4.48分。

提示:A→E→O→G→B。

5.50千米。

提示:架设的线路如下图。

6.D。

提示:本题可简化为“B,C,D,E,F处分别站着1,1,2,2,1个人(见下页图),求一点,使所有人走到这一点的距离和最小”。

7.从水塔到C点铺粗管,最后三个居民点铺细管,总费用为297000元。

提示:当长度相同时,四根细管的费用超过一根粗管,所以最后三个居民点用细管。

第三篇:小学六年级奥数教案

小学六年级奥数教案:行程问题

第一讲 行程问题

走路、行车、一个物体的移动,总是要涉及到三个数量: 距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示: 距离=速度×时间

很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如

总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米

一、追及与相遇

有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离

= 甲的速度×时间-乙的速度×时间 =(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此

所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是

面包车速度是 54-6=48(千米/小时).城门离学校的距离是 48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

×10÷(75-50)= 20(分钟)? 因此,小张走的距离是 75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是

一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 解一:自行车1小时走了 30×1-已超前距离,自行车40分钟走了

自行车多走20分钟,走了

因此,自行车的速度是

答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差

1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:

马上可看出前一速度差是15.自行车速度是 35-15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 解:画一张简单的示意图:

图上可以看出,从爸爸第一次追上到第二次追上,小明走了 8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了 4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么 甲走的距离+乙走的距离 =甲的速度×时间+乙的速度×时间 =(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇? 解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是 36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图

离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米

小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是 2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下

设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点

(或E点)相遇所用时间是 28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是

12÷0.4=30(千米/小时).同样道理,乙的速度是 16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米? 解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了

因此在 B与 C之间平路上留下 3-1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是 2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是 25+ 15= 40(分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走

小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.二、环形路上的行程问题

人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王? 解:(1)75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是 500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是

500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是 80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少? 解:画示意图如下:

如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是 40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了 6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是 小张 10÷2=5(千米/小时),小王 8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? 解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了 3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是 10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了 3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村 8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇? 解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:

12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了

此时两人相距 24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是 5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只

爬虫出发后多少时间第一次到达同一位置? 解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是 15,105,150,195,…… 再看看A与B什么时候到达同一位置.第一次是出发后 30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要 90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是 6,24,42,78,96,…

对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒? 例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求

解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出

分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与 P→C→B所用时间相等.PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间 =18-12 =6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得 PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有 BN上所需时间-AN上所需时间 =P→D→A所需时间-CB所需时间 =(9+18)-12 = 15.BN上所需时间+AN上所需时间=AB上所需时间 =16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题

在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间? 解:画一张示意图:

图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于

这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是 1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要 130÷2=65(分钟).从乙地到甲地需要的时间是 130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米? 解:先画一张示意图

设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成: 骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:

不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是 1+1.5=2.5(单位).每个单位是 2000÷2.5=800(米).因此,从公园到家的距离是 800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间? 解:画一张示意图:

设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是 14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了 7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图

第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此 顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出

A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的

解一:画出如下示意图:

当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的

到达D处,这样,D把第一段分成两部分

时20分相当于

因此就知道,汽车在第一段需要

第二段需要 30×3=90(分钟);

甲、乙两市距离是

答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例

8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是 5∶9∶2.汽车走完全程所用时间是 80×2=160(分种).例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米? 解:设原速度是1.%后,所用时间缩短到原时间的

这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要

同样道理,车速提高25%,所用时间缩短到原来的

如果一开始就加速25%,可少时间

现在只少了40分钟,72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间

真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长

答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有 x∶120=72∶32

第四篇:六年级奥数教案

思源学校第二课堂(第六周)

判断与推理 2 授课人:雍尧

教学要求:(1)理解逻辑推理的四条基本规律,学会运用分析、推理方法解决问题。

(2)培养学生逻辑推理能力.教学重点:学会运用分析、推理方法解决问题。

教学难点: 理解、掌握分析、推理方法。

教学方法:讲解法、图表法、练习法。

(一)教学过程:

一、复习。

上节课的习题例2

二、教学新课 教学例3

甲乙丙三人被蒙上眼睛,告诉他们每个人头上都戴了一顶帽子,帽子的颜色不是红的就是绿的。然后,就去掉蒙眼睛的布,要求每个人如果看见别人(一个或两个)戴的是红帽子就举手,并且谁能断定自己头上帽子的颜色,谁就马上离开房间。三人碰巧戴的都是红帽子,因此三个人都举了手,几分钟后,丙首先走开了,他是怎么推导出自己头上帽子的颜色的?

(1)学生审题,理解题意。(2)同座位讨论。

(3)分析:此题关键:注意到甲乙两人没有立即离开房间这个事实。丙推理,我的帽子如果是绿的,甲根据乙举手立即知道自己的帽子是红的,那他应走出房间,乙会做同样的推理离开房间。甲乙不能很快判断自己帽子的颜色,说明我的帽子不是绿的,而是红的。(4)说说你的推理过程。

3、比较前面例2例3有什么相同不同之处。

三、巩固练习。教学例4 学田小学举行科技知识竞赛,同学们对一贯刻苦学习爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二;

(2)丙得第二,丁得第三;(3)甲得第二,丁得第四。

比赛结果一公布,果然是这四名学生获得前四名。但以上三种估计,每一种都对了一半错一半。他们各得第几名?(1)学生审题,理解题意。(2)同座位讨论。(3)分析:利用图表帮助学生去推理判断。

第一种假定“丙第一错,乙第二对”出现矛盾。照此推理“丙第一对,乙第二错”没有出

现矛盾。所以丙第一,甲第二,丁第三,乙第四。(4)每人口述推理过程。

四、小结。

这节课你学会了什么?

第五篇:小学六年级奥数教案—06工程问题二

小学六年级奥数教案—06工程问题二

本教程共30讲

工程问题

(二)上一讲我们讲述的是已知工作效率的较简单的工程问题。在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。

例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完成?

分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:

从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)

甲、乙合做这一工程,需用的时间为

例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后

么还要几天才能完成?

分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作

们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独

例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?

分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。甲、乙合作需要

例4 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?

分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一

例5 某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、„„的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?

分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是

例6 甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流

件工作,要用多少天才能完成?

分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。

由最后一轮完成的工作量相同,得到

练习6

1.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。甲完成有多少个?

需的时间相等。问:甲、乙单独做各需多少天?

3.加工一批零件,王师傅先做6时李师傅再做12时可完成,王师傅先做8时李师傅再做9时也可完成。现在王师傅先做2时,剩下的两人合做,还需要多少小时?

独修各需几天?

5.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。问:甲管在何时被关闭?

6.单独完成某项工作,甲需9时,乙需12时。如果按照甲、乙、甲、乙、„„的顺序轮流工作,每次1时,那么完成这项工作需要多长时间?

7.一项工程,乙单独干要17天完成。如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。问:甲单独干需要几天?

答案与提示练习6

1.360个。

2.甲18天,乙12天。

3.7.2时。

解:由下页图知,王干2时等于李干3时,所以单独干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。所求为

5.上午9时。

6.10时15分。

7.8.5天。

解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。

甲乙甲乙„„甲乙甲乙甲乙„„甲乙 甲

现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做8.5天。

下载小学六年级奥数教案—28运筹学初步二(五篇模版)word格式文档
下载小学六年级奥数教案—28运筹学初步二(五篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学六年级奥数教案几何类

    小学六年级奥数教案:图形面积 简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的......

    小学六年级奥数教案—09百分数

    小学六年级奥数教案—09百分数 本教程共30讲 百分数 百分数有两种不同的定义。 (1)分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。 (2)表示一......

    六年级奥数教案3

    第二课堂牛吃草问题(2)练习课 一、课堂例题: 5. 快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6......

    小学奥数牛吃草问题教案(二)

    牛吃草问题二 典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又......

    小学奥数牛吃草问题教案(二)

    奥数十三讲 牛吃草问题二 典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天......

    小学六年级奥数教案—圆柱圆锥(定稿)

    小学六年级奥数圆柱圆锥 圆柱与圆锥 这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。 例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还......

    小学六年级奥数教案相遇与追击

    小学六年级奥数教案—相遇与追击 有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在......

    小学六年级奥数教案-圆与扇形

    小学六年级奥数教案—11圆与扇形 本教程共30讲 圆与扇形 五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、......