《数学广角──集合》教材分析(精选5篇)

时间:2019-05-15 07:45:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《数学广角──集合》教材分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《数学广角──集合》教材分析》。

第一篇:《数学广角──集合》教材分析

《数学广角──集合》教材分析

敖江上山小学 周明镇

本单元教材第一次安排了简单的集合思想的教学。集合思想是数学中最基本的思想,虽然学生在计数和计算的学习中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。学生在早期学习数学时就已经开始运用集合的思想方法。如:分类的思想与方法,再如:一年级时接触过这样题:“有一列小朋友,从前数明明排第5,从后数明明排第3,这一列有几人?”对于“重复的人数要减去”,学生是有经验的,能够列式解答。集合数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。这一数学思想的引入为培养学生的逻辑思维能力提供了良好的素材。在今后的学习经常运用到维恩图表示关系,如:三角形的分类、各种四边形关系等。都是让学生在体会运用上解决实际问题,为今后学习奠定基础。

本单元共有9个用集合思想方法解决的题目(含例题、“做一做”、练习题),涉及学生在生活(比赛人数、水果品种、参观人数等)和学习(按要求填数、写成语等)中经常遇到的问题:求两个集合的并集或交集的元素个数。让学生通过观察、操作、猜测、推理与交流等活动,初步感受数学思想方法的奇妙与作用,受到数学思维的训练,逐步形成有序地、严密地思考问题的意识,同时使他们逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。教材中体现以下几点:

1.重视学生的已有基础,唤起学生学习的“兴趣点”,自主探索与接受学习有机结合(1)在例1教学中,用统计表的形式给出三(1)班参加跳绳、踢毽比赛的学生名单,提出要解决的问题。教师要让学生自主探索,思考解决问题的方法。呈现了一一列举出参加两项比赛的学生姓名(两个集合的元素),把重复的连起来(找到交集的元素)解决问题的方法,让学生体会在求两个集合的并集时,它们的公共元素在并集中只能出现一次。

(2)介绍用Venn图表示集合及其运算的方法,让学生体会集合元素的特性:互异性和无序性,体会集合的运算:交集、并集。

(3)提出问题“可以怎样列式解答?”让学生用计算解决两个集合的并集的元素个数问题,脱离具体的集合元素,从集合基数(元素个数)的角度思考解决问题的方法。2.利用直观的数形结合,突破探究的“拐弯点”,帮助学生感悟集合思想

在数学中,经常用平面上封闭曲线的内部代表集合,这种图被称为维恩图。这种表示方法直观、形象,尤其对于解决比较复杂的问题(例如,涉及三个以上的集合的并、交的问题)更能显示出它的优越性。因此,教科书注重借助维恩图表示集合及其运算,帮助学生理解集合的知识,并让学生掌握画维恩图的方法。在通过例题介绍了用维恩图表示集合及其运算的方法后,接下来的练习中,不断让学生应用维恩图解决简单的实际问题,并利用维恩图帮助学生进一步理解集合概念及其关系。

3.提供丰富的练习内容,完善思维的“结构点”,有层次地渗透集合知识

首先,注重联系学生生活实际,帮助学生学习掌握新知。本单元共有9个题目来源于学生熟悉的情境,学生虽然熟悉这些情境,但以前不一定从集合的角度来思考并解决问题。因此,这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。

其次,有层次地设计练习,逐步丰富并完善学生对集合知识的理解。例如,例题“做一做”和练习二十三的第1~4题,都提供了具体的集合元素的支撑,帮助学生理解集合及其运算。在学生积累了较丰富的活动经验的基础上,练习二十三的第5题和第6题,则脱离了具体的集合元素的支撑,让学生从集合元素的个数的角度抽象地探索解决此类问题的方法,提升思维的水平。

再如,除了提供两个集合之间有交集且部分元素相同的情况外,为避免思维定势,还给出了两个集合没有交集(练习二十三第4题第(1)题)、有包含关系的两个集合(练习二十三第6题第(1)题)等情况,丰富学生对集合间关系的认识。

第二篇:数学广角集合

《数学广角——集合》教学设计

数学学科 成艳娇

教学目标:

1、在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。

2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。

3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

教学重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。

教学难点: 对重叠部分的理解。教具准备: 课件。教学过程:

一、创设情景,激趣导入。

师:同学们,你们喜欢脑筋急转弯吗?下面我们来猜一猜,有信心吗? PPT:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,其中一个人重复了两个角色,是哪个?

师:分析得不错,因为有一个人重复了,这里的妈妈既是外婆的女儿,又是小女孩的妈妈,所以只有3人。

这就是我们生活中经常遇到的集合问题。这节课,我们就来探讨数学广角的集合问题。(揭示课题)(老师在本节课还要收集积极举手和坐姿优美的同学名单,希望我们每一位同学都能拿出最棒的自己来。)

二、探究体验,经历过程。

1、教学例1.1过程一。师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)

师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。

师:那么,参加这两项比赛的一共有几位同学?你会计算吗? 学生可能回答;

一共有17人,9+8=17(人)。

可是,参加这两项比赛的没有17人呀。我发现有的人两项比赛都参加了。

应该是一共有14人参加了,算式是9+8=14(人)。„„

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢? 生:因为有3个人重复了。

生:因为这3个人既参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算 的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。师:同学们的发言真是精彩,报名参加这两项比赛的一共有多少名同学呢? 生:14人。

2、过程二。

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。

“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀?

生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。

3、过程三。

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:

生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。

师:杨明、李芳、刘红都参加了两项比赛,可是,为什么在跳绳和踢毽的圈里没有他们呢?能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。

学生动手试着画图,并向全班展示。

4、过程四。

师:PPT出示创作出来的韦恩图,同学们真棒,居然和我们伟大数学家发明的图一样,这就是十九世纪英国的哲学家和数学家——韦恩发明的图,所以取名叫韦恩图,希望同学们也能继续扎实学习,老师期待以后能看到用咱们班同学的名字命名的数学小发明,看图,说说每一部分分别表示什么?

生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。

师:你能用一个算式表示出参加这两项比赛的人数吗?

生:9+8-3=14(人)生:(8-3)+3+(9-3)=14(人)分别说一说每个数字代表的意义。

三、巩固提高

既然同学们这么聪明,把韦恩图学懂了,那接下来有些题目让大家来完成,考考大家是否真的学懂了,有信心吗? 请看题。

1、动物运动会

同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。

六一节就要到了,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?

学生说说动物名称。老师表扬:你们的课外知识真丰富,老师很佩服你们。比赛项目:游泳、飞行

师:小动物们可以参加什么项目呢?学生讨论、反馈。

师:原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上相应的圈内)说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。点到天鹅时,说说它应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么? 出示:既会飞又会游泳的 2:龙田龙兴文具店

同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗? ①龙兴文具店昨天、今天批发文具的情况

②观察图,发现了什么?(两天都批发了钢笔、尺、练习本)③两天共批发多少种货?

学生列式:5+5-3=7 5×2-3=7 5-3+2=7 说说怎么想的?

3:回看这节课积极举手和坐姿优美的同学的名单情况,同学们能不能利用本节课的集合思想,创造出集合图呢? 动手创作(名单板书在黑板)四:全课小结

1:通过今天这节课的学习你学会了什么?

2:今天这节课,你觉得谁的表现较好,好在哪里?

教学反思 “数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级上册开始新增设的一个内容,涉及的集合也就是老版的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就

可以了,教学时老师不要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。综上分析,本课的教学目标定位为:

1、使学生借助直观图,利用集体的思想方法解决简单的实际问题。

2、使学生解决实际问题的过程中体会集合的思想。

3、培养学生善于观察、善于思考,养成良好的学习习惯。

在本节课的教学试验中我觉得在教学设计中,注重以下几个方面: 一:情境导入,适时引导

数学来源于生活,并应用于生活。教师可以通过现场调查学生熟悉的兴趣爱好,如:对“唱歌和画画”的喜欢情况作为教学素材展开教学,根据学生名单获得生活中的数学信息,并根据信息提出教学问题,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参加学习过程。二:设置认知冲突,感知体验集合图

以“这一小组一共有几人?”这一问题冲突为线索,让学生提出问题,当学生解答时出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。

三:联系生活实际、体现数学的应用的广泛性

在教学设计过程中创设了贴近学生生活实际的事例和学生喜闻乐见的故事情境。如在进行练习时,把根据动物特性填写集合图的练习题,创设成了一个“动物运动会”的场景,把动物特性“游泳、会飞”形象地比喻成“游泳、飞翔”两个比赛项目,让学生帮助小动物进行报名,这一场景的创设变原本枯燥的练习形式为生动的数学活动,既提高了学生参与数学活动的积极性,又激发了学生乐于助人的思想品质;又如在紧接的“龙兴文具店”中也充分引入学生的社会经验,让学生真真切切的感受到数学就在自己的身边,数学在生活中实际作用,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,同时还对进行了热爱家乡、立志建设好家乡的思想教育。

四、总结提升。师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。

课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?

第三篇:数学广角集合

《数学广角集合》教学设计

教材分析:

本单元是非常有趣的数学活动,也是逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本单元主要要求学生能根据提供的信息,借助集合圈进行判断、推理,得出结论,使学生初步接触和运用集合圈分析问题、解决问题。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生借助几何直观思考问题的意识。教学要求:

1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。2.能借助直观图,利用几何的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。教学目标:

1.在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

教学重点 :让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。教学难点 :对重叠部分的理解。教具准备 :课件 教学过程:

一、创设情景,激趣导入。

师:老师先给大家出一道脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。

二、探究体验,经历过程。1.教学例1.师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)

师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。师:那么,参加体育训练的一共有几位同学?你会计算吗?

学生可能回答;一共有17人,9+8=17(人)。

可是,参加这两项活动的没有17人呀。我发现有的人两项活动都参加了。应该是一共有14人参加了,算式是9+8=14(人)。……

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?

生:因为有3个人重复了。

生:因为这3个人及参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。

生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。

师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同学呢? 生:14人。2.出示另一种方法

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。

师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。

“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀? 生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。3.方法三。

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。

分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:

生1:我觉得左边的同学是代表参加跳高的,应该圈在一起;右边的同学代表参加跳远的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是及参加了跳绳的,又参加了踢毽的呢?再想想,看还没有没更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。

生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。学生动手试着画图,并向全班展示。4.方法四。

师:看图,说说每一部分分别表示什么?

生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。

师:你能列式计算这两个小组的人数吗? 生:9+8-3=14(人)

生:(8-3)+3+(9-3)=14(人)

三、总结提升。

师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。

课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?

四、课堂作业。

1、同学们去春游,带面包的有78人,带水果的有77人,既带面包又带水果的有48人。参加春游的同学一共与多少人?

2、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。

(1)既参加数学竞赛又参加作文竞赛的有几人?(2)只参加数学竞赛的有几人?(3)只参加作文竞赛的有几人?

第四篇:数学广角找次品教材分析

数学广角找次品教材分析

本单元以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。同时,进一步理解随机事件(例如,2个零件中有1个较重的次品,只要把这2个零件放在天平两端,天平一定不平衡;3个零件中有1个较重的次品,任意取2个放在天平两端,天平可能平衡,也有可能不平衡),体会解决问题策略的多样性和优化思想,感受数学的魅力,培养观察、分析、逻辑推理的能力,并学习用直观的方式清晰、简洁、有条理地表示逻辑推理过程。

一、与实验教材(《义务教育课程标准实验教科书数学五年级》,下同)的主要区别 1.与实验教材相比,例1将原来问题中的5瓶钙片改为3瓶钙片,主要目的是让学生从最简单的问题情境入手,初步理解“找次品”的含义,明确找次品的基本思路。

2.与实验教材相比,例2将原先问题中的探索9个零件改为先探讨8个零件,再研究9个零件,主要目的是让学生理解“尽可能地将待测物品平均分成3份”的合理性。

3.与实验教材相比,修订后的教材从例题到习题,增加了直观图和流程图的表示方法,配以相应的文字说明,目的是能比较简洁而又清晰地表示出逻辑推理的整个过程,让人一目了然。

4.与实验教材相比,修订后的教材更加注重数学思维过程的表达。如例1中小精灵的提问,实验教材为“说一说你是怎么称的?”新教材改为“你能想办法把用天平找次品的过程,清楚地表示出来吗?”例2新教材的提问为“你们打算怎样表示找次品的过程?”目的是引导学生用直观、简明的方式,清晰地表示出推理过程,理清思路,为后面数量更多的找次品问题作好铺垫。

5.与实验教材相比,修订后的教材更加注重帮助学生理解题意。如例2中“至少称几次能保证找出次品?”是理解的难点,新教材通过两位同学的对话帮助学生理解“至少”“能保证”的含义,这样的编排是在实验教材中没有体现的。

6.与实验教材相比,修订后的教材更加注重理解逻辑推理的思想过程与方法。如例2下面的记录表格发生了变化,新教材的表格中设置为“每次每边放的个数”“分成的份数”“至少要称的次数”,而实验教材设置为“零件个数”“分成的份数”“称的次数”“保证能找出次品需要称的次数”,主要目的是从实践活动提升到逻辑推理的层面上,头脑中形成一种抽象的数学化的模拟天平。7.与实验教材相比,修订后的教材在习题设计中涉及面更广、针对性更强。例如,新教材将“做一做”中实验教材的10瓶盐水改为28瓶盐水,删除了实验教材练习二十六第3题分数加减法的习题和第7题关于集合运算的习题。

二、教材例题分析

本单元分两个内容编排:从3件物品中找出1件次品(轻一些),初步认识“找次品”问题,了解找次品的基本思路;从8个零件中找出1个次品(重一些),探索找次品的一般方法。

例1:从3件物品中找出1件次品。教材从最简单的问题(3瓶钙片)入手,让学生讨论找次品的方法,通过交流聚焦到用天平来找次品的方法上来。通过用天平直观演示,说明基本推理过程:如果天平平衡„„如果天平不平衡„„。接着教材通过小精灵的提问:“你能想办法把用天平找次品的过程,清楚地表示出来吗?”引导学生用直观方式记录找次品的思维过程。需要明确用天平找次品,并不是一定要通过天平称,而是利用天平平衡原理,通过逻辑推理确定出次品,因此教师可以引导学生用格式大致统一的直观图或流程图辅以文字说明来记录和推导,当然,学生也可以用不同的表示方法,但一定要合理。

例2:教学找次品的一般方法。有了例1的基础,学生已经知道找次品的基本推理思路,教材在让学生理解了“至少称几次能保证找出次品”的含义后,通过小精灵直接提出“你们打算怎样表示找次品的过程?”可采取以下措施:一是让学生将推理的过程用直观、简洁的方式表示出来,并用“直观图”示例引导;二是让学生把不同的方案记录在表格中,以便进行分析、猜测;三是通过问题给出探索的线索,找出称的次数最少的方法,进行归纳、验证,概括出找次品的最优方法。

本单元的教学重难点是理解并解决简单的“找次品”问题,充分经历“比较——猜测——验证”的过程,归纳出“找次品”的最优策略,感知逻辑推理的数学思想方法。

第五篇:数学广角—集合说课稿

《数学广角——集合》说课稿

执教:陈明琴

一、对教材的认识和理解

《集合》是新课标三年级上“数学广角”例1。集合的知识体系集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象。而以后学习的平面图形之间的关系都要用到集合的思想,如,把一堆图形分类,需要一定的标准,这种分类思想就是集合理论的基础,所以集合的重要性由此可见一般。但这些都只是单独的一个集合圈。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,并利用直观图的方式求出两个小组的总人数。教学要使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。

二、说说本节课的目标制定

本节课教学目标在教学设计过程中,以新课程理念为指导,将数学知识和生活有机结合,通过自主探究、操作实践让学生经历数学学习的过程,从而达到感悟知识的目标。基于以上认识,本节课在把握教材意图的基础上,目标定位如下:

1、通过整理图表活动,让学生经历问题解决的数学化过程,获得数学学习体验。

2、使学生理解用直观图(韦恩图)表示“重叠现象”的方法,并利用集合的思想方法培养学生解决简单问题的能力。

3、通过课堂教学活动,让学生体验数学的价值,培养和提高学生的观察能力、思考能力,创新能力、评价说理能力。

本节课的重点是让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。难点是对重复部分的理解。

三、课堂上着重体现的数学思想方法有以下几个方面

1、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并顿悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验

2、培养学生思维的严密性严谨性是数学学科的基本特征之一。数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。反思今天的教学过程,我觉得我们也非常注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“喜欢跳绳”和“喜欢踢毽”,而去掉了都参加的部分后是“只喜欢跳绳人数”,“只喜欢踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既喜欢跳绳又喜欢踢毽”让学生明白这是两种活动都喜欢的,课堂上时时注重学生严密的思维。

3、根据实际情况解决问题的能力。具体情境具体分析.最后的题目对这一句话有了很好的诠释。重复的现象,这就需要用到今天学的重复知识来解决。

下载《数学广角──集合》教材分析(精选5篇)word格式文档
下载《数学广角──集合》教材分析(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数学广角——集合》教案

    《9 数学广角——集合》教案 教学目标: 1、使学生能借助直观的韦恩图解决简单的实际问题,并能用数学语言描述。 2、让学生经历探究韦恩图的产生过程,使学生感知韦恩图的产生,初......

    数学广角集合教案

    数学广角——集合 贾市小学姚小维 【教学目标】 1.能借助直观图,利用集合思想解决简单的实际问题。 2.感受数学在现实生活中的广泛应用,尝试用数学的方法解决问题,体验解决问......

    《数学广角──推理》教材分析(第1课时)

    本套教材从一年级开始就渗透和应用推理的数学思想,如一年级下册的找规律,本单元把推理的数学思想通过学生日常生活中最简单的事例以及游戏呈现出来,并运用观察、猜测等直观手......

    《数学广角——集合》教案设计(范文)

    《数学广角——集合》教案设计 【教学内容】义务教育程标准实验教科书人教版数学(三)年级(上)册第(九)单元第(1)时《 集合 》。 【教学分析】 在例1教学中,用统计表的形式给出三(1)班参......

    《数学广角—集合》教学设计

    《数学广角——集合》教学设计 一、教学目标: 1、理解集合圈里各部分的意义。 2、会读集合圈中的信息,会按条件填写集合圈。 3、使学生会借助直观图,利用集合的思想方法解决简......

    数学广角---集合教学设计

    第九单元 数学广角——集合 教学内容: 三年级数学上册第九单元《数学广角》 教学目标: 1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述......

    数学广角集合——教学反思

    数学广角——集合 ——教学反思 1、本节课的设计从学生的认知经验出发,恰当的确定教学目标。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握......

    四年级上册数学第七单元《数学广角》教材分析(5篇可选)

    四年级上册数学第七单元《数学广角》教材分析 本单元通过烙饼问题、沏茶问题、卸货问题等简单事例,初步体会运筹思想在实际问题中的应用;通过田忌赛马的故事初步体会对策方法......