第一篇:基于LED驱动器的新型调光方案详解
基于LED驱动器的新型调光方案详解
在许多照明应用中,人们都采用了能够产生已调大电流脉冲的功率驱动器,从DLP 投影机中的大电流 led到高功率激光二极管等等。例如:在高端视频投影机中,高功率 LED 用于产生彩色照明。这些投影机中的RGB LED 需要精准的调光控制以实现准确的彩色混合 ── 在该场合中,除了简单的 PWM 调光以外,还能够提供更多的控制功能。通常,为了实现彩色混合中所要求的宽动态范围,LED 驱动器必须要能够在两种完全不同的已调峰值电流状态之间快速切换,并叠加 PWM 调光而不造成任何损坏。LT3743 能够满足这些苛刻的准确
度和速度要求。
LT3743 是一款同步降压型 DC/DC 控制器,它运用固定频率、平均电流模式控制,以通过一个与电感器相串联的检测电阻器准确地调节电感器电流。在一个 0V 至“低于输入电压轨 2V”的输出电压范围内,LT3743 能够以 ±6% 的准确度来调节任意负载中的电流。
通过把准确的模拟调光(高光度状态和低光度状态)与 PWM 调光组合起来,实现了精准、宽范围的 LED 电流控制。模拟调光通过 CTRL_L、CTRL_H 和 CTRL_T 引脚来控制;PWM 调光则通过 PWM 和 CTRL_SEL 引脚来控制。通过采用在外部进行开关操作的负载电容器这种独特的做法,LT3743 实现了高和低模拟状态之间的快速变换,从而能够在几 μs 的时间内改变已调 LED 电流水平。开关频率可以在 200kHz 至 1MHz 的范围内进行设置(通过采用一个外部电阻器)和同步至一个频率范围为300kHz 至1MHz 的外部时钟。
开关输出电容器拓扑结构
在传统的电流调节器中,负载两端的电压存储于输出电容器之中。如果负载电流突然改变,则输出电容器中的电压必须进行充电或放电以与新的已调电流相匹配。在转换期间,负载中的电流未得到良好的控制,因而导致了缓慢的负载电流响应时间。
LT3743 通过采用一种独特的开关输出电容器拓扑结构解决了这一问题,该拓扑结构实现了超快的负载电流上升和下降时间。这种拓扑结构背后的基本概念是:LT3743 起一个已调电流源的作用,负责向负载提供驱动电流。对于某个给定的电流,负载两端的电压降存储于第一个开关输出电容器中。当需要一种不同的已调电流状态时,将第一个输出电容器关断,并接通第二个电容器。这使得每个电容器能够存储与期望已调电流相对应的负载电压降。
图 1 示出了具有各种控制引脚的基本拓扑结构。PWM 和 CTRL_SEL 引脚为数字控制引脚,用于确定已调电流的状态。CTRL_H 和 CTRL_L 引脚是具有一个 0V 至 1.5V 全标度范围的模拟输入,可在电流检测电阻器两端产生一个 0mV 至 50mV 的已调电压。
图 1:基本的开关电容器拓扑结构
图 2 示出了对应于 PWM 和 CTRL_SEL 引脚各种不同状态的定时波形。当 PWM 为低电平时,所有的开关操作将被终止,而且两个输出电容器均与负载断接。
图2:LED 电流 PWM 和 CTRL_SEL 调光
尽管 LT3743 可以采用开关输出电容器来配置,但它能够很容易地适应任何传统的模拟
和/或 PWM 调光方案。
开关周期同步
LT3743 使所有的开关脉冲边沿同步至 PWM 和 CTRL_SEL 上升沿。同步赋予了系统设计师采用任意周期或非周期 PWM 调光脉冲宽度和占空比的自由度。对于大电流 LED 驱动器而言,这是从零电流或低电流状态恢复至高电流状态过程中必不可少的特点。通过在 CTRL_SEL 或 PWM 信号变至高电平时重新起动时钟,电感器电流将立即开始斜坡上升,而无须等待一个时钟上升沿。未采用同步时,时钟脉冲沿和 PWM 脉冲沿的相位关系将不受控制,因而有可能在 LED 光输出中引起明显的抖动。当采用一个具 SYNC 引脚的外部时钟时,开关周期将在 8 个开关周期之内重新同步至外部时钟。
一款适合高端 DLP 投影机、采用开关输出电容器的 24V、20A LED 驱动器。高端 DLP 投影机要求极高质量的图像和彩色重现。为了实现高的彩色准确度,各个 LED 当中的彩色偏差是通过混入其他两个彩色 LED 的色彩来校正的。例如:当红光 LED 处于满电流导通状态时,蓝光和绿光 LED 将以低电流水平接通,这样它们就能够被混入以产生准确的红光。这种方法需要具备在较低(约 2A)和较高(约 20A)LED 电流之间进行快速转换的能力,以保持 PWM 调光脉冲沿。图 3 示出了一款专供高端 DLP 投影机使用的 24V/20A LED 驱动
器。
图3:采用开关输出电容器的 24V/20A LED 驱动器
450kHz 的较低开关频率允许使用一个非常小的 1.0μH 电感器。在 25% 纹波电流条件下,高电流状态与低电流状态之间的转换时间大约为 2μs。1mF 的大输出电容器存储了两种不同电流状态下 LED 两端的电压降,并提供了 MOSFET 调光开关接通时的瞬时电流。对于实现快速 LED 电流转换来说,采用几个并联的低 ESR 电容器是至关紧要的。
第二篇:基于PWM调光的多功能LED台灯设计方案
基于PWM调光的多功能LED台灯设计方案 2012-04-26 站长统计 中心议题:
基于PWM调光的多功能LED台灯设计方案 解决方案
探究系统硬件电路设计方法
设计基于PWM 调光的多功能LED 台灯
引言
随着全球能源危机和气候变暖问题的日益严重,绿色节能已经成为全球普遍关注的话题,人们正通过各种途径寻找新的节能方式。照明是人类消耗能源的重要方面,在电能消耗中,发达国家照明用电占发电总量的比例是19%,我国也达到12%.随着经济发展,我国的照明用电将有大比例的提高,因此绿色节能照明的研究越来越受到重视。LED 作为一种固态冷光源,是继白炽灯、荧光灯、高强度放电灯(如高压钠灯和金卤灯)之后的第四代新光源。基于白光LED 的固态照明,是一种典型的绿色照明方式,与传统光源相比,具有节能、环保、寿命长、体积小、安全可靠等特点,代表着照明技术的未来,并符合当前政府提出的“建设资源节约型和环境友好型社会”的要求。可以预见不久的将来,LED 必然会进入普通照明领域取代现有的照明光源。
目前,市场上采用白炽灯、卤素灯、荧光灯为光源的台灯普遍存在着低效率、高能耗、不易调光等缺点;至于寿命结束的含汞灯,一旦处理不当,将对环境造成严重危害;而且部分台灯产品功能单一,缺少亮度调节、时钟日历、温度显示等功能,无法适应现代家庭生活的实际需求。为解决当前问题,本文设计了以AT89S51 单片机为核心的多功能白光LED 台灯系统,采用PT4115 大功率LED 恒流驱动方案,可实现对LED 台灯的PWM 调光控制;同时兼有时钟日历、声光闹钟、温度检测、液晶显示等多项功能。在实现高效节能的同时,为家庭使用提供了极大的便捷。系统硬件电路设计
该多功能 LED 台灯系统采用20 只5mm 高亮白光LED 灯珠为光源,以AT89S51 单片机为主控芯片,由LED 恒流驱动系统、时钟系统、测温系统、液晶显示系统、蜂鸣系统、按键系统组成。系统结构框图如图1 所示。
该系统可具体实现LED 台灯的10 级PWM 调光控制;液晶屏实时显示时钟、日历与环境温度信息;闹钟功能采用声光报警方式,即一旦到达闹钟时间,LED 台灯自动点亮,并发出蜂鸣声报警,以唤醒用户;用户可通过按键系统实现对时钟日历与闹钟参数的设置、LED 亮度的调节以及闹钟报警的解除。
图1 系统结构框图
1.1 单片机主控系统
本设计主控系统采用ATMEL 公司的高性能AT89S51 芯片实现,其P0 口外接10K 的上拉电阻,P0.0~P0.7 同时作为DS12C887 的数据接口与液晶1602 的数据接口。P2.0~P2.3分别连接DS12C887 芯片的片选端CS、地址选通输入端AS、数据选择端DS 与读/写输入端R/W,P3.2 连接其闹钟中断请求输出端IRQ.P2.5~P2.7 分别连接液晶1602 的使能端EN、数据/命令选择端RS、读/写选择端RW.P2.4 作为蜂鸣器控制端。P3.0 作为DS18B20 的信号输入端。P3.1、P3.4、P3.5、P3.6 与P3.7 作为S2~S6 按键系统。P1.1 作为PWM 信号的输出端并连接PT4115 芯片DIM 端,用于PWM 调光控制。系统晶振电路由12MHZ 晶振与两个30PF 电容组成;复位电路则由S1 按键、10K 电阻与10uF 电解电容构成。主控系统电路如图2 所示。
图2 单片机主控系统电路图
1.2 恒流驱动系统
本设计 L ED 光源采用相互并联方式,共由20 只5mm 高亮度小功率LED 灯珠组成;每只LED 灯珠的压降约3.1V,工作电流约20mA.由白光LED 的正向伏安特性可知,当LED 端电压超过其正向导通电压后,较小的电压波动都会导致工作电流的的剧烈变化,从而影响LED 的正常使用,固LED 宜采用恒流驱动方式。因此,本设计LED 采用高性能PT4115 恒流芯片驱动,PT4115 是一款连续电感电流导通模式的降压恒流源芯片,能将直流电压直接转换成稳定的恒流输出;其采用6~30V 宽电压输入,输出电流可达1.2A,转换效率高达97%,输出电流精度达±5%.该芯片内部含有抖频特性,极大的改善EMI,同时具有过温、过压、过流、LED 开路保护等多种功能。该芯片适合用于绿色照明LED灯的驱动电路,具有应用电路非常简洁的优点。LED 恒流驱动电路如图3 所示。
图3 LED 恒流驱动系统电路图
通过 PT4115 芯片上的DIM 端,可以方便的进行模拟或PWM 调光。由于模拟调光是直接改变流过LED 电流的大小来实现亮度调节,除了亮度会改变以外,也会影响白光的质量,即不同电流下发出的白光存在色偏。因此,本设计采用PWM 调光方案,PWM 调光的基本原理是保持LED 正向导通电流恒定,而通过控制电流导通和关断的时间比例,即改变输入脉冲信号的占空比,使LED 产生亮暗变化;并利用人眼的视觉残留效应,当LED 亮暗变化频率大于120Hz 时,人眼就不会感觉到闪烁,而看到是LED 的平均亮度。PWM 调光的优势是LED 正向导通的电流是恒定的,LED 的色度就不会像模拟调光时产生变化。
PT4115 恒流驱动输出的电流值计算公式为:
IOUT =(0.1×D)/ Rs(D 为方波信号占空比,Rs 为限流电阻。
本设计 LED 光源采用20 只小功率白光LED 灯珠并联方式,且每只LED 灯珠额定电流为20mA,则PT4115 恒流驱动输出最大电流IOUT 应为400mA,因此Rs 选取0.25 Ω 电阻。
L1 为镇流电感,选取68μ H,用于稳定通过LED 的电流。D1 是续流二极管,当芯片内部MOS 管截止状态时为储存在电感L1 中的电流提供放电回路;由于工作在高频状态,D1 选用正向压降小且恢复速度快的肖特基二极管SS24.PWM 脉冲信号则由单片机P1.1 产生,其高低电平决定LED 的通断状态。将定时器T0溢出中断定为1/2500 秒(即400μ S),每10 次脉冲作为一个周期,即频率为250HZ.这样,在每1/250 秒的方波周期中,通过改变方波的输出占空比,从而实现LED 灯的10 级亮度调节,即LED 亮度等级由每个周期内的高电平脉冲数目决定。当高电平脉冲个数为1 时,占空比为1/10,亮度最低,其调光原理如图4 所示;当高电平脉冲为10 时,占空比为1,LED亮度最高。
图 4 PWM 调光原理图
1.3 时钟系统
时钟系统采用高性能的DS12C887 时钟芯片,该芯片功能丰富,使用简单,是一款高精度实时时钟芯片;其可以自动产生世纪、年、月、日、时、分、秒等时间信息,具有闰年补偿及闹钟(定时)功能,并且内部自带有锂电池,外部掉电时,仍可维持时钟准确,其内部时间信息能够保持10 年之久;外部系统断电后,用户无需重新设定时间。
DS12C887 时钟芯片有两种总线工作模式,即Motorola 和Intel 模式。本设计选用Intel模式,即将芯片第一引脚MOT 接GND.同时,时钟系统设置为24 小时模式,寄存器存储模式选为二进制格式。P0.0~P0.7 连接其地址数据复用端口AD0~AD7.P2.0~P2.3 分别连接芯片片选端CS、地址选通输入端AS、读/写输入端R/W 与数据选择端DS.P3.2 连接中断请求输出端IRQ,用于处理闹钟中断。该时钟接口电路如图5 所示。
图5 时钟系统电路图
1.4 液晶显示系统
显示系统采用1602 字符型液晶。该液晶可显示两行,每行显示16 个字符;且体积小、能耗低、操作简单;适合于本设计所需数字、英文字母以及特殊符号的显示要求。通过单片机控制1602 液晶实现首行年、月、日、星期显示,第二行时、分、秒以及环境温度显示。
本系统 1602 液晶采用并行操作方式,P0.0~P0.7 通过借助10K 的上拉电阻连接其数据端口DB0~DB7,P0 口同时也连接着DS12C887 的数据地址端口,由于各自片选信号不同,选中时操作对应芯片将不会造成操作冲突。P2.5~P2.6 分别连接1602液晶的使能端E、读/写选择端RW、数据/命令选择端RS.第3 引脚为液晶显示对比度调节端,通过10K 滑动变阻器接地,用于调节液晶的显示亮度。第15 管脚背光源正极BLA通过10 欧电阻接地,第16 管脚背光源负极BLK 接地。该液晶接口电路如图6 所示。
图6 液晶系统电路图
1.5 温度检测系统
温度检测系统选用DALLAS 公司“一线总线”接口的数字温度传感器DS18B20,该传感器具有微型化、低功耗、高性能等优点,可直接将温度转化成串行数字信号处理,测温范围为-55~125℃,最高分辨率可达0.0625℃。DS18B20 共有三个引脚电源正VCC、电源负GND 和信号输入输出口DQ.R3 为4.7K 的上拉电阻,用于保证单片机与DS18B20 通讯时高低电平准确的被单片机机和DS18B20 识别。单片机P3.0 口通过R3 连接DQ 端口实现温度数据的采集处理,并通过液晶屏实时显示。温度检测电路如图7 所示。
图7 温度检测电路图
1.6 蜂鸣系统
蜂鸣系统用于产生闹钟报警声以及按键提示音。由单片机P2.4 口控制PNP 三极管9012的通断实现对蜂鸣器声音控制;通过延迟函数实现蜂鸣报警声的长短音控制,长音''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''滴''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''用于闹钟铃声,短音''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''滴''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''用于按键提示音。蜂鸣系统电路如图8 所示。
图8 蜂鸣系统电路图
1.7 按键系统
按键控制系统由S2~S5 五个按键组成,分别为S2 时间设置键、S3 数值增大键、S4 数值减小键、S5 闹钟设置键以及S6 亮度调节键。S2 用于选择需要调整的时间日历以及闹钟参数,并作为时间日历参数的存储确认键。S3 与S4 用于调整被选参数值的大小。S5 用于闹钟查看与存储确认键。S6 用于LED 灯光10 级亮度的调节键。按键系统电路如图9 所示。
图9 按键系统电路图
1.8 电源系统
本系统设计最大功率约1.6W,可采用电池或稳压电源多种方式供电。由于系统光源采用20 只LED 灯珠并联组成,所以LED 恒流驱动芯片PT4115 供电电源在6~30V 电压范围内均可使LED 灯正常使用。但单片机供电系统采用三端稳压芯片7805,该线性稳压芯片正常工作输入电压与输出电压差值应至少高于2V,若差值过大会增加额外功耗。因此,本系统宜选用2 节4.2V 锂电池或9V 的稳压电源方式供电。同时,本文LED 恒流驱动系统设计简洁灵活,可根据用户需求适当调整驱动电路参数,即可扩展LED 照明功率,最大可至10W左右。系统软件设计
该系统控制程序主要包含系统初始化程序、实时时钟芯片处理程序、温度传感器芯片处理程序、液晶显示程序、键盘检测与处理程序、闹钟中断以及定时器产生PWM 程序构成。
2.1 系统主程序
系统主程序主要包括系统初始化程序(包括I/O 口初始化、DS12C887 时钟芯片初始化、液晶1602 的初始化、外部中断0 与定时器T0 设置)、按键检测和处理程序、时钟数据的读取与处理程序、温度数据的读取与处理程序、液晶显示程序、闹钟报警的判断和处理程序、PWM 调光处理程序等。程序中设置闹钟标志位Flag_ri,一旦闹钟时间到达,时钟芯片IRQ引脚触发外部中断0,进入中断程序则置Flag_ri=1,用于主程序中闹钟报警的判断与处理。
系统主程序流程图如图10 所示。
图10 主程序流程图
2.2 按键检测和处理程序
按键控制系统由S2~S6五个按键组成,分别为S2时间设置键、S3数值增大键、S4数值减小键、S5闹钟设置键以及S6亮度调节键。S2用于选择需要调整的时钟以及闹钟参数,根据S2按下次数,依次选择秒、分、时、星期、日、月、年,液晶屏上被选参数下方以光标闪烁状态提示,再通过按下S3或S4调整被选参数值的大小,S2按下累积8次时,则退出选择功能并保存当前数据至时钟芯片。S5用于闹钟时间的查看与设置;首次按下S5,1602液晶屏第二行显示已设置的闹钟时间;可通过S2、S3与S4重新设置闹钟时间;再次按下,则退出闹钟查看功能并保存当前设置的闹钟参数至时钟芯片。同时,S3与S4还可独立作为闹钟产生时的取消键与LED灯光的关闭键。S6实现LED灯光亮度的10级调节,每按一次,LED亮度增大一级;当达到亮度最大时,再次按下则关闭LED灯光。每次有按键按下,蜂鸣器都以短''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''滴''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''声提示。按键检测与处理流程图如图11所示。
图11 按键检测与处理流程图
2.3 闹钟中断程序
系统到达设置的闹钟时间,DS12C887 时钟芯片IRQ 引脚输出由高电平变为低电平,作为单片机P3.2 口INT0 中断的申请输入,并可通过读取DS12C887 芯片的C 寄存器来清除IRQ 引脚输出。因此,将外部中断INT0 设置为负跳变沿触发中断,并设置闹钟标志位Flag_ri,闹钟时刻到达时设置Flag_ri=1,用于主程序中的闹钟报警处理。闹钟中断程序如图12 所示。
图12 闹钟中断流程图
2.4 定时器中断程序
为产生调节 LED 灯光亮度的PWM 信号,定时器T0 设置为工作方式0,即13 位计数器定时,最多装载数值为213=8192 个。因为系统晶振采用12MHz,赋值使TH0=(8192-400)/ 32 与 TL0=(8192-400)%32,即可实现400μS 的定时中断。10 次中断(即4mS)作为一个周期,通过调节每个周期内单片机P1.1(该控制口名称定义为LED_PWM)输出的占空比来产生PWM 脉冲信号,以控制PT4115 恒流驱动芯片实现LED 灯的10 级亮度调节。
程序设置对T0 中断次数(即定义为T0_num)进行计数,以便判断一个周期到否;同时判断比较高电平脉冲个数(即定义为scale 值,由调光键S6 按下次数设置)用于实现不同亮度等级的调节。在定时器T0 中断服务程序中,首先T0 重新装入定时为400μ S 的初值;定时器中断次数T0_num 加1,判断一个方波周期到否,若到达,令T0_num 归零,并将P1.1口输出电平置高(即LED_PWM=1);如果一个方波周期还没到,则与亮度等级scale 值作比较,判断高电平脉冲个数scale 到否,若到达,令P1.1 口输出电平置低(即LED_PWM=0),否则继续保持P1.1 口输出高电平(即LED_PWM=1);而后中断返回,等待下一次定时中断。
这样,P1.1 口就产生了所需的PWM 调光信号。定时器生成PWM 流程图如图13所示。
图13 定时器生成PWM流程图 实验结果
根据以上设计方案,本文制作了该款基于PWM 调光的多功能LED 台灯。经调试后系统运行稳定可靠,基本可以满足家庭生活的使用要求。系统工作时,最低功率(即LED 熄灭状态)为0.28W;最大功率(即LED 最高亮度状态)约为1.52W;同时,液晶显示时间、日历与温度数据准确,闹钟功能稳定。实物照片如图14 所示。
图 14 实物照片 结论
本文多功能LED 台灯系统采用AT89S51 单片机为控制核心,运用恒流驱动方案与PWM调光技术实现L ED 台灯的多级调光控制,并兼有时间日历、温度检测、液晶显示以及声光闹钟等功能。该系统具有控制电路简单、亮度调节精确、功能丰富、实用便捷等优点,适合于现代家庭的实际需要。可以预见,随着LED 照明技术的不断发展完善,节能高效的LED将在家用照明领域发挥着日益重要的作用。
第三篇:掌握驱动器特性 低电压AC LED应用放光芒(范文模版)
掌握驱动器特性 低电压AC LED应用放光芒
低电压交流电照明系统在市场上愈来愈受欢迎。在零售商和家居建材行大力推广下,已使电源系统纳入特定低电压的使用规则,用户不必经过承包商便能自行安装。此外,低电压交流电LED系统也能实现稳定的电路分析,有助提升产品的可靠性。
低电压交流电照明系统在市场上愈来愈受欢迎,从室内重点照明(Accent Lighting)到一般的轨道灯,乃至于应用在户外照明系统。零售商和家居建材行如IKEA和Home Depot已经将这些技术迅速而广泛的传达给顾客,使电源系统纳入特定低电压的使用规则,使用者
便不必经过承包商而能自行安装。
低电压交流电LED照明应用兴起
所有低电压交流电照明系统使用的是一种独立式主电源,这个主电源提供离线交流电转换成低电压的方案,在任何负载下,即使电路处于开路的情况,其输出均不会超过30伏特有效值(VRMS)。其次,在所有状况下,电路必须有一个25安培(A)的电流限制,这两个条件将决定低电压交流电照明应用的最大电力。典型的输出电压是12或24伏特交流电(VAC),但仍须保持25安培最大电流值不变,不论是12伏特、300瓦(W)的系统或24伏特600瓦的系统皆是。
鉴于上述原因,低电压交流电照明在发光二极管(LED)照明应用中,相当受到青睐,该技术甚至可应用在300瓦的LED照明功率中,相当于三至四个路灯的输出。此举让设计者在设计上拥有很大的弹性,可允许相对较大型的单一组件或由单一电源提供的多组态灯器设计,亦或是在这两者之间的设计。可确定的是,透过具弹性的LED照明应用设计,将使照明
系统从传统白炽灯大步往前迈进。
而在低压交流电系统中,可考虑三个不同的照明灯具,首先是仅在一到两个个别系统中装置一个大/高输出设计;其次为可支持十到二十个装置于系统小灯源的中型输出设计;最后则是可允许在单一系统中存在五十到一百个照明器的小型输出设计。
大型数组设计打造高灯源输出应用
以大型数组设计而言,在两个不同的范围中,立即能显现出LED独特设计的好处,特别是在更独特的大型照明灯源例子中,可透过大型数组创造出高灯源输出应用。一般而言,在路灯的应用(采用高电压离线解决方案)上会使用100瓦的LED灯源,虽然不建议其使用低电压交流电系统(这会带来整个规则和标准的新设置),但设计者却有机会以低电压交流电的预算达到同样效果,进而从一个3.5伏特的顺向电压和使用350毫安电流的标准LED着手进行设计,大致上以每个1.2瓦或约八十个LED为基础。
为达到所期待的输出电力,使用单一驱动器并使用多组串联/并联组合方式的LED方案便很有吸引力,但产业界通常不鼓励此种设计规则,原因在于若支持个别控制每一个LED线路,首先遇到的问题为,LED和温度有前馈的关系,当温度上升时,须严格控制顺向电压下降,以避免更多电流流动,进一步使LED的温度升高。其最大的影响就是在不同线路共享相同电流之下,将会很快产生搭配不当的问题,若电流没有被个别安排,以便通过整个线路,便很可能成为系统故障的来源。
利用在线设计工具寻找适合LED驱动器
如同前述,市场上有各式各样的驱动器能符合需求。美国国家半导体(NS)就有几款LED驱动器能够达到所需的最大输入范围,同时也具备简易设计的特性和效能表现。先从24VAC系统谈起,此为最引人注意的特殊大型灯具,目前谈及的驱动器都是直流对直流(DC-DC)转换器,所以在主电源提供的交流电讯号将会有进行一些整流的情形,基于此种情况,对转换器的输入条件须改为:24VRMS=67.88VPP和在调整后驱动器最大的输入电压范围34伏特。
就确实可知的条件来说,在此阶段的设计上,设计者心中可能已有一个特定的LED规格,而本文讨论的所有设计,都可以使用如美国国家半导体的WEBEBCH LED Designer在线设计工具进行开发,可以键入输入电压(34伏特直流电)、LED类型/值及所需的输出组态。此外,在350毫安和Vf=3.5伏特条件下,可驱动九个LED组合而成的24VAC灯串,整流后为34伏特直流电(VDC)。而透过在线工具中的参数搜索工具,看似拥有许多适用的输入范围,然因工作周期的限制,其实并没有大量可支持的线路。在此情况下,仅有美国国家半导体的LM3401和LM3409两款LED驱动器可作支持,若把LED的数量从九颗减少至八颗,在驱动器的选择上才会增加。
值得注意的是,当灯串的LED数量增加时,则须要经由电压的升压来支持,现今大多低电压交流电应用的主要转换器拓扑为降压转换器(输出到LED的驱动电压比输入到转换器的电压还低),这是对较少LED线路的主要观点。
了解驱动器角色对症下药
一般来说,尽可能使用单一驱动器来驱动多个LED最符合成本效益,然并不主张在单一驱动器中使用并联线路,而是希望串联线路尽可能延长;其有利条件在于,即使线路受到严格规范和保护,亦可确保通过LED的电流皆相同。如此一来,一个较大的输入电压就能简单驱动大量的LED线路,只是在经过整流后,该线路通常会流失一半的交流电电压值,故其优势大打折扣;为解决此一问题,则可改采升压解决方案(输出电压比输入电压大时),以减轻
驱动大量LED线路的负担。
另一个观点是,若灯串可维持低于二十个LED(Vf=3.5V和350mA的LED驱动电流),就能在低电压限制下维持升压输出(在84.85VPP的低电压限制下有70VDC),可经由美国国家半导体任一款LM342X驱动器达到,它提供过压/欠压保护机制、电流限制,以及依需求选配的过热保护功能。
此外,对于驱动器装置特色的了解在电路设计上扮演重要的角色,如是否须支持脉冲宽度调制(PWM)调光、模拟调光等,或是为改变光源输出是否须加入一些光学要件及过热保护,以上考虑均为选用何种驱动器的因素。
针对上述需求,LM3421/23驱动器具备阻止和察觉额外错误警告的特色,对于欲达到高层级保护及提供微控制器(MCU)反应的应用来说,是很合适的组件。而LM3424内建的过热保护功能有利于光学或过热保护应用(降低与LED温度有关的输出电流);再者,LM3429虽为此系列产品最基本款的驱动器,但仍具有在升压应用中的过压保护和电流限制,协助升压检测。
图1所示为驱动二十个LED,每一个平均电流均为350毫安,3.5伏特顺向电压的电路图,此外,电路也许会因为须要进行模拟调光(当输入减少时光源的输出就会降低)而有所改变,以符合简单又全面受到保护的线路驱动器。如欲寻求更严格的颜色准确度,可采用PWM
调光。
图1 大型数组设计应用LM3429的升压配置,采用24VAC系统,在电流为350毫安的条
件下,可驱动二十个LED
大电容方案降低涟波 延长电解质电容寿命
有一个简单的概念是应用升压解决方案来恢复以交流电整流驱动大量LED灯串时损失的电压,且仍保持在低压限制中,这大约是前端消耗的27瓦(在92%效率下的24.5瓦LED),故显而易见,系统是如何在单一附件下拓展成每个线路都受到完整保护的高规格设计。
若进一步采用四条这样的电路,则每条线路均能达成完整保护和控制的100瓦设计目标,为实现此一架构,则可能在前端使用一个一般的整流器(只需要×4电流率的桥接二级管和C1/C2的×4电容)。此外,LED照明设计如果在低电压系统下有300~600瓦的可用电力,25安培的总电流对设计人员而言就具有很多选择。举例来说,从D1~D4需要被规范出最大电压和电流的余量(Headroom)。输出的电容可用下列方程式表示:
C=0.7(I)/ΔE(f)
其中,I代表到下游电路的输入电流(直流对直流转换区),ΔE为可允许的涟波电压,而f则是交流电频率。由于此设计有92%的效率,鉴于LED功率为24.5瓦,这代表前端的直流对直流区将有26.6瓦的功率;而在整流(34VDC)后,从24VAC的电源使用26.6瓦并产生约782毫安的平均输入电流,如此一来,将可适当调整二级管整流器的规格。
另一方面,可接受的涟波也影响着电容的需求,举例来说,执行一个800毫安的输入电流,且在120Hz线路上允许一个1伏特的涟波(因桥接整流器的关系为2×60Hz)需要9,300μF的大电容;如果是3伏特的涟波则只需要1,500μF,由于降低涟波对电解质电容的寿命提供较佳的保护,故此情况下,大电容将是可能采取的选择方案。
小型数组设计挑战重重 降低电容温度势在必行
另一个极端的设计范围是小型数组设计,该设计可能是单一LED组件或是一个单独的组件中包含三个组件,可让1瓦变成3瓦的现代化LED照明效率解决方案,在环境和公园照明
设备中颇受欢迎。
小型数组设计对105℃额定值的电容而言,让它们保持冷却在65℃及更低的温度,为此设计中较薄弱的环节;不过,由于电解质电容每低于额定温度10℃,就能增加一倍的使用寿命,意味着若一个设计师可维持65℃或更佳的温度状况,105℃额定电容将能延长十六倍的额定寿命,在此比率下,5,000小时的额定电容可延长到80,000小时,对小型数组设计来
说,虽为极大的挑战但仍势在必行。
由此可证,良好的热能设计在LED应用扮演关键角色,且使用有效率的驱动器如LM3429,则使设计挑战更容易解决。在此设计上,最热门的装置是单结型场效应晶体管(FET)M1开关,其可达到约65℃的温度表现,虽然并没有多大影响,但是设计者必须确定它与其它重要热源均与电解质电容保持距离,且所有板上的组件都保持在50℃以下,可见从LED散出的热
能永远是最大的挑战,而不是电子学。
小型数组设计获橱柜/展示用照明青睐中国照明网技术论文·LED照明
橱柜和展示用照明是低电压交流电系统中,关于小型数组设计的另一个受欢迎应用,可考虑一个3伏特正向电压、350毫安、1瓦的LED,搭载一个简单的12VAC系统,即可因降压转换器的架构提供充分余量,并可有效率的驱动LED。如图2所示,LM3407提供一个350毫安的输出限制、小型封装,和极少的外部组件,以驱动此类型的LED。由于低功率消耗的设计(在输入端稍为超出1.5W)概念,可在一个单独的低电压12VAC电路支持多达两百个模块,若使用24VAC系统操作,则可超过两百五十个(大部分低电压系统的电流限制最大为2
5安培)。
图2 符合小型数组设计的LM3407采用12VAC系统,可驱动电流为350毫安的3Vf单一
LED
反观交流对直流(AC-DC)的转换则是以大型数组设计处理,基于直流对直流转换区的输入电流,可为输入整流二极管和保持电容选择适当值。在此设计中,小于100毫安的输入电流和允许2伏特涟波约需290μF电容,因此,330μF将能轻易实现这样的需求。
有一项额外考虑系针对较小负载设计而生,主要系一次侧变压器的工作可能需要某一个最低负荷,当处在非常小且低功耗的系统中,便须要特别考虑此问题。以一个60瓦低电压交流变压器而言,可能需10瓦的负载才能正常运行,而LED装置的效率可根据主电源的供
应范围处理该问题。
举例来说,在美国国家半导体的RD-148参考设计中,运用LM3405A展示在12VAC系统下驱动一个3.6Vf、600毫安的单一LED解决方案。而基于该参考设计架构的LM3405A和LM3407均适用于在较小灯光模块中,因其有较小的封装尺寸(LM3405A采SOT23封装)和极少的外部组件。透过RD-148的实例,将能简易实行一个尺寸为14毫米×21.5毫米的完整解决方案,甚至是更小的解决方案也可能实现。
实现中型数组系统 热能管理至为关键
目前中型设计(中型数组,但许多个别系统)已提出最新的进展,藉由使用单一封装的较大多组件数组就能提高照明输出,且有更好的效率和热能管理技术。欲完成此种设计,可考虑一个10.5伏特的Vf暖白光数组,和一个典型的640毫安电流。值得注意的是,维持数组在典型的电流或适当的热能管理设计,特别能延长产品寿命,甚至是在高温有害的环境中,虽然这对许多IC驱动器是很困难的挑战,但在市场需求的推动之下,可预期不久之后就有大量符合此需求的产品出现。然而,在经过几个设计循环后,产业界便发现许多整合FET的驱动器,对于热能设计有处理上的困难。
承续上述论点,许多整合FET的产品在30℃环境温度下操作,其IC接面点温度超过90℃,这代表组件在外部环境建议的操作温度下,只有35℃的余量(到达150~160℃时就会进入热能关机,但最大的建议操作温度是125℃),这对热能机械设计来说是很难处理的,故须确保该情况不会在LED的应用上发生。
热能挑战迎刃而解 高整合控制器功不可没
总括来说,60℃温差的热能循环(从LED帽到焊接点,一直到驱动板)在设计上并不完美。谈到LED的使用寿命和可靠性,热能永远是必须解决的问题,而图3所示的LM3409控制器就是一个优异的选择,它能让设计者透过各种外部组件将热能排出,以一个低成本的P-Channel金属氧化物半导体场效晶体管(PFET)外部组件为例,藉由使用LM3409就能显著降低系统温度,而其中最热的组件应该是53℃的PFET。
图3 适合中型数组设计的LM3409采用12VAC系统,可驱动640毫安电流和10.4伏特的LED数组封装。
由于LM3409的接面温度是43℃,而所有测试都在30℃环境温度下进行,这表示其拥有充分的热能余量,也使设计者更容易达到热能设计的目标。此外,LM3409系一个高度整合的控制器,特别是用于固定电流的LED驱动应用中,所以只需要少数的外部组件,便可以解
决尺寸问题和降低生产成本。
LM3409亦具有容易进行调光控制的优势,不论是PWM调光(在EN接脚上)或是模拟调光,均可藉由一个电压分压器隔开主要输入轨来获得模拟调光功能,如此一来,就能在输入电压直接降低时,连带使LED电流下降,以达到设计弹性。其次,如果要求绝对色彩准确性或其它特殊的调光功能,则可使用PWM讯号(外部的微控制器或类似装置所提供)或是模拟IADJ
接脚,完成此一需求。
另一方面,LM3409具有两个有效的监视电流回路,一个是设置在高端电流感测电阻RSNS,另一个直接在ISENS。设计者有三个方法经由ISENS来达到模拟调光,首先是透过ISENS开路以让RSNS控制LM3409;再者系提供接脚一个从0~1.24伏特的外部电压(由RSNS设置时1.2伏特是最大输出);或可从接脚到地面连结一个分压器以改变电流(永远将RSNS设置到
最大)。
透过以上三种方式,在交流电转换成直流电后,经由电压分压器到主输入轨就能轻易连结;不过若选择电压分配器在1.24伏特时,则可拥有最大的输入电压(12VAC系统16.97V,24VAC系统33.94V),因此,当输入电压较低时,理所当然会产生一个较低的光源输出。
而值得讨论的是,该情况与不具典型调光装置驱动器的差别,或没有这个连结的话,LM3409将如何表现。
由于上述情况均是针对直流对直流的调节器,所以会有输入到输出改变的自然情形,有鉴于此,想要对一个固定的电压或电流加以控制的想法便应运而生。举例来说,若不提供一个调光讯号,电路就会尝试维持电流的规格,直到输入电压接近输出电压(LED驱动电压),且输出电平将不会改变,直到输入端进入电路讯号损耗区(通常是在降压调节器运作下驱动电流时,输入的伏特数高于所要求的输出),当输入电压开始下降时,输出电压也随着快速
减少。
反观在PFET控制器的调节下,LM3409只有小范围的改变,能够在整个工作周期下,维持非常低的损失,其使用模拟调光功能可以线性方式降低LED电流,使LED具备可调光的设计,在开关关闭前达到欠压锁定设定(或者可以用极小的输出电压驱动LED)。藉由改变电压的方式来达到调光功能,已能有效的控制输入线路,而在交流对直流的前端,则需要额外的电容以达到光源输出后,所造成的输入涟波最小化。
此外,透过直接连结调光功能到输入电压,可不须顾虑LED驱动器的稳定度。除非充分过滤,否则输入线路的任何暂时状态都会显示在输出上。因此,该连结方式较不受到支持,除非须要使用调光功能,让IADJ维持开路。
另一方面,低电压TRIAC调光装置也可能会带来设计上的挑战。使用调压变压器或以交流低电压波形降低峰值的低电压调光系统,若使用类似的电路就可以良好的运作,不过,TRIAC调光系统需要额外的电路用以适当的译码截波波形。
低电压交流电系统结合LED 照明解决方案大小通吃
总结而言,低电压交流电系统结合LED照明效能,可提供设计者创造各式各样从小型到大型照明解决方案的能力。美国国家半导体拥有适用于24VAC和12VAC系统广泛的产品组合,以协助实现其设计,在五花八门的产品阵容下,决定使用那种解决方案则取决于组件的特色,以及所需的解决方案尺寸。
尤其须要注意的是,整体系统的设计须透过现今驱动器的一些特性与进展,才能作出正确的决定,并使设计变得更简易、更健全和有效降低成本。拥有完备的解决方案知识,将能够进一步实现兼具快速及成本效益的解决方案,亦让设计人员拥有许多可用的选择。
不仅如此,低电压交流电LED在简化设计方面也提供稳定的电路分析,有关这些优点都能节省设计时间和金钱,同时也能提升产品的可靠性。
第四篇:低功耗蓝牙BLE手机遥控LED开关和调光的方案
低功耗蓝牙BLE手机遥控LED开关和调光的方案
来源:我爱方案网
[导读] 本方案基于低功耗蓝牙方案内置蓝牙4.0芯片,可与支持蓝牙4.0的手机连接,手机通过相应软件可对台灯进行灯光开关和调光控制。
关键词:led开关BLE蓝牙技术
手机遥控调光台灯简介
此调光台灯支持传统的触摸调光控制和手机调光控制两种方式。其内置蓝牙4.0芯片,可与支持蓝牙4.0的手机连接,手机通过相应软件可对台灯进行灯光开关和调光控制。
功能特点
1、传统触摸灯光灯光控制;
2、支持蓝牙4.0手机无线遥控;
3、隐藏式白光LED节能灯,无频闪、不伤眼、免维护、节能、环保、长寿;
4、机内配置高容量长寿命可充电电池,安全、节能、方便;
5、全封闭灯罩及灯体设计,防尘,易清洁;
适用于:烛光晚餐、野外宿营、应急照明、宿舍夜读、居家备用、烧烤伙伴、露天音乐会、夜间集市照明等。
产品特色:手机蓝牙开关和调光控制/快速触摸感应/任意调控亮度/灯芯晶莹剔透/无频闪不伤眼/内置充电电也/节能环保长寿。
iPhone 4S手机摇控LED台灯方案图
操作说明
首次使用:第一次使用本触摸节能灯时,为了发挥充电电池的正常功能,请先用随产品配送的USB充电线的圆形插头一端连接至触控节能灯底座的DC电源插孔,另一端连接到可正常供电的电脑USB插口,或USB电源适配器的USB插口上,充电6小时之后即可正常使用;
●传统触摸控制:
1、开灯和关灯:用手指或手掌触摸节能灯侧面的感应键或节能灯顶部圆盖,即可点亮或熄灭灯光;
2、调控灯光亮度:用手指或手掌触摸节能灯侧面的感应按键或节能灯顶部圆盖约三秒,即可任意调亮或调暗灯光至合适的亮度,手离开感应键或圆盖,灯光亮度即可保留在该水平上;
●手机灯光控制:
1、台灯与手机配对:手机在开启BLE调光台灯软件后会自动扫描台灯设备并建立连接;
2、开启手机控制模式:用手触摸手机软件上的手机控制开关按钮,即开启手机控制灯光功能;
3、开关灯和灯光亮度调控:用手触摸软件上的灯光开关按键和调光滑条可对台灯进行控制;
充电:当灯光亮度变暗时,表示节能灯需要进行充电,与首次使用时的充电方法一样,给节能灯充电约6个小时即可再次使用。一般情况下,视调控灯光的强度不同,本节能灯充电一次可连续使用大约5个小时至30个小时;
电源适配器要求:本产品除了用电脑的电源充电之外,还可使用有USB接口的电源适配器充电,其适配器是参数应符合如下要求:输入AC 110V-220V,输出DC 5V,500mA(适配器需自配)。
结论
随着信息时代的高速发展,人们已经离不开信息网络,手机更是贴身随带,我们便想若手机能控制灯光,以上问题不就迎刃而解。以上调光台灯,是手机遥控照明方案的一个典型应用。
第五篇:基于C51单片机和PWM调光的LED台灯设计
摘要
LED台灯作为LED绿色照明光源产品,作为国家绿色照明推广使用的产品。在实际的应用中,发现LED灯在周边亮度大时依然以同一功率发光,存在电能浪费;在周边亮度小时LED灯不能提供足够和恰当的光度。本文介绍了以STC89C51为控制核心,通过光敏电阻感应光度,并利用PWM调光技术对LED进行光度的自动调节。同时设置手动控制。该LED台灯电路简单,很大程度上节省电能,延长LED灯寿命,适宜阅读。
关键词
LED台灯 光度 PID PWM调光 自动调节
原创性声明
本设计所用到的程序代码和电路均是来自本团队,如没有经过允许,不得复制和转载。
目录
前言··············································4 总体方案设计······································5 硬件设计··········································5 软件设计··········································9 总结·············································12 附录1:作品照片··································13 附录2:程序·······································15
前言
LED照明又称固态照明,作为继白炽灯、荧光灯后的第三代照明技术,具有节能、环保、安全可靠的特点,固态光源是被业界看好的未来十年替换传统照明器具极具潜力的新型光源,代表照明技术的未来。发展新固态照明,不仅是照明领域的革命,而且符合当前政府提出的“建设资源节约型和环境友好型社会”的要求。
LED台灯就是以LED(Light Emitting Diode)即发光二极管为光源的台灯,LED是一种固态的半导体器件,它可以直接把电转化为光。LED台灯是典型的绿色照明光源产品,作为国家绿色照明推广使用的产品,具有广阔的应用前景。
在实际的应用中,发现LED灯在周边亮度大时依然以同一功率发光,存在电能浪费。另外一方面,因为LED的发热量和电流存在正相关的关系,发热影响了LED的寿命,所以在不必要的亮度下也减少了LED的寿命。然而,当LED在周边亮度小时,LED灯不能提供足够和恰当的光度,这样又影响了阅读,造成视觉疲劳。
PWM方法的基本思想就是利用单片机具有的PWM端口,在不改变PWM方波周期的前提下,通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而控制充电电流。本方法所要求的单片机必须具有ADC端口和PWM端口这两个必须条件,另外ADC的位数尽量高,单片机的工作速度尽量快。在调整充电电流前,单片机先快速读取充电电流的大小,然后把设定的充电电流与实际读取到的充电电流进行比较,若实际电流偏小则向增加充电电流的方向调整PWM的占空比;若实际电流偏大则向减小充电电流的方向调整PWM的占空比。
本文介绍了以STC89C51为控制核心,通过光敏电阻感应光度,并利用PWM调光技术对LED进行光度的自动调节。同时设置手动控制。该LED台灯电路简单,很大程度上节省电能,延长LED灯寿命,适宜阅读。
一、总体方案设计
基于C51单片机和PWM调光的LED台灯以STC89C51作为主控芯片,设置了手动控制和自动控制。在手动控制时,分为三档,输出不同的PWM占空比对LED的电流进行控制,从而实现了对光度的手动调节。
在自动控制时,通过ADC0809模拟-数字转换芯片不断检验光敏电阻的电压来间接测量感应光度,将电压和预设的阈值进行对比,调整PWM的占空比对LED的电流进行控制,从而实现了对光度的自动调节。总体框图如下(图1.1):
图1.1
二、硬件设计
硬件设计总体框图如下:
图2.0
1、主控电路: 主控电路采用STC89C51作为主MCU。STC89C51是一款八位,片内有ROM/EPROM的单片机,其硬件结构具有功能部件种类全,功能强等特点。这种芯片构成的最小系统简单、实用﹑可靠。用STC89C51单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如下图(图2.1)所示。本设计所选用的晶振为12MHZ,晶振电容为30PF。
图2.1
2、LED驱动
LED的亮度受电流控制,通过控制电流调节LED灯的亮度。利用公式ILtONTI可知,利用调整PWM不同的占空比就可以控制电流的大小。电流通断的变化用NMOS管K2717实现,三极管9014提供驱动K2717的电流,PWM由P2.0输出,低电平有效。如下图(图2.2)所示:
图2.2
2、手动控制
KEY4变化控制的方式,KEY4为自锁按键,按下为手动控制,弹起为自动控制。手动控制时可以分为三档,对应与KEY1~3三个按键。如下图(图2.3)所示:
图2.3
3、自动控制
<1>光敏电阻反馈部分
光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换。因此,不断采集光敏电阻对地的电压便可以获知台灯周边光强的变化。如下图(图2.4)所示:
图2.4 <2>ADC0809模数转换部分
ADC 0808和ADC 0809除精度略有差别外(前者精度为8位、后者精度为7位),其余各方面完全相同。它们都是CMOS器件,不仅包括一个8位的逐次逼近型的ADC部分,而且还提供一个8通道的模拟多路开关和通道寻址逻辑,因而有理由把它作为简单的“数据采集系统”。利用它可直接输入8个单端的模拟信号分时进行A/D转换,在多点巡回检测和过程控制、运动控制中应用十分广泛。
如下图(图2.4)所示,ADC0809的参考电压设置成5V,时钟信号通过单片机P3.3口利用定时器中断输出。光敏电阻的对地电压从IN3口输入,ADC0809将其转换成数字量后通过OUT1-7输出,以便单片机进一步处理。
图2.5
三、软件设计
1、总体框图
图3.1 8
2、主要程序
<1>按键扫描
不断扫描按键判断是手动控制和自动控制。程序代码:
void keyscan(){
ad();
if(key==1)
//key4松开,a恒为0 ,通过读c的值确定b的值
{
if(c<0.40)
last=0;
else if((c>=0.40)&&(c<2.0))
last=2;
else if((c>=2.0)&&(c<3.0))
last=5;
else if((c>=3.0)&&(c<4.0))
last=7;
else
last=10;
}
if(key==0)
//key4按下,{
if(key1==0)
{
delayms(10);//去抖
if(key1==0)
last=1;
}
if(key2==0)
{
delayms(10);
if(key2==0)
last=6;
}
if(key3==0)
{
delayms(10);
if(key3==0)
last=10;
}
}
}
手动控制 9
<2>AD转换
定时器1产生CLK信号,定时时间为2us,亦即CLK周期为0.4us。程地址为011,即IN3口输入。利用公式getdata*1.0/255*VREV+对数字量进行变化。程序代码如下:
void ad(){
} ST=0;//关闭转换 OE=0;//关闭输出 ST=1;//开启转换 ST=0;//关闭转换 P34=1;//选择通道0 P35=1;P36=0;while(EOC==0);//判断是否转换结束:是则执行以下语句,否则等待 OE=1;//开启数据输出允许
getdata=P0;//将数据取走,存放在变量getdata中
OE=0;//关闭输出
c=getdata*1.0/255*4.85;//电压值转换,5V作为参考电压,分成256 <3>PWM调节
定时器0控制PWM周期和占空比。程序代码如下: void into(void)interrupt 1 { TH0=(65536-500)/256;TL0=(65536-500)%256;
count++;if(count>CIRCLE)
{ count=1;}
if(count<=last)pwm=0;//占空比,使用反相器应为1 else
pwm=1;
四、总结
基于C51单片机和PWM调光的LED台灯以STC89C51作为主控芯片,设置了手动控制和自动控制。在手动控制时,分为三档,输出不同的PWM占空比实现了对光度的手动调节。在自动控制时,通过ADC0809模拟-数字转换芯片不断检验光敏电阻的电压来间接测量感应光度,将电压和预设的阈值进行对比,调整PWM的占空比实现了对光度的自动调节。该LED台灯电路简单,很大程度上节省电能,延长LED灯寿命,适宜阅读。
同时,在本次课程设计中,主要有以下体会:
1、对LED的驱动有进一步的了解,明白了如何对LED进行规定电流驱动,并通过输出不同的占空比来调节LED的亮度,从而对LED的耗电进行相应的管理;
2、进一步掌握了AD转换原理以及相关芯片的应用,通过ADC0809对外界的模拟量进行转换。
3、培养了自己的团队意识,能够比较好的和队员就项目进行及时的沟通,在分工和整合方面做的不错。附录1:作品照片