八年级切面圆柱体

时间:2019-05-15 07:12:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级切面圆柱体》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级切面圆柱体》。

第一篇:八年级切面圆柱体

八年级美术教案

明暗表现——切面圆柱体(4.1)

备课时间:

授课时间:

课时: 教学内容:(光影知识)切面圆柱体明暗的表现效果。

教学目的与要求:针对椭圆在不同位置透视的变化,引导学生去理解圆柱体透视的特征及切面的透视变化。认识切面圆柱体的变化及素描的明暗关系和表现效果。

教学重点:了解切面圆柱体的透视现象,使学生掌握圆柱体的透视画法。教学难点:切面圆柱几何形体绘画各阶段的具体要求。教学方法:讲授、观察、示范;

教学原则:直观性原则、实践性原则、审美性原则等; 教学准备:

1、写生物圆柱、球体、易拉罐(静物、聚光灯);

2、示范工具材料;

3、明暗素描范画及学生作业。

教学内容:

一、组织教学

检查学具,稳定情绪。

二、引入新课

复习圆柱体知识点并导入本科(板书课题)

三、讲授新课

1、分析圆柱体和切面圆柱体的特征出示石膏圆柱体和切面圆柱体模型,让生观察它的形体。圆柱体的两端是圆面,圆面的小大一样,圆柱体上下两端同等粗细,周边是与中轴等距的直线。切面圆柱体注意切面的透视切面是椭圆形(师出示插图讲解)

2、切面圆柱体的透视现象

椭圆有何特征

椭圆离我们近的弧度较大,面积也较大,离我们远的,弧主较小,面积也较 小。A.以圆形面的直径为长方形的 边长,画出方形的透视效果图。B.在平置的方形透视图内连对角线,再以对角线相交的中心点画横竖十 字线,找出四边的中心。C.与方形四边中点相切画圆形。

四、教师示范学生观察

五、学生实践,教师指导 要求:透视准确,关系突出

六、评讲作业,对优秀作业予以表 扬,指出存在的问题。

第二篇:圆柱体教学设计

《圆柱的体积》教学设计

教学目标

(一)认知目标:

1、理解和掌握圆柱体积的计算公式。

2、会应用公式计算圆柱的体积,并解决实际问题。

(二)能力目标:

1、培养学生的空间观念及有序的观察、分析、综合、比较、抽象概括的能力。

2、培养学生的迁移类推能力和动手操作能力。

(三)情意目标:渗透知识间相互“转化”的思想及节约意识。教学重点:

理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。教学难点:

理解圆柱体积计算公式的推导过程。教具:

圆柱体转化成长方体模型;电脑课件等。教学过程:

一、复习回顾

1、师:同学们,我们一起来回忆一下,什么叫做物体的体积?常用的体积单位有哪些?(板书:体积)

2、课件呈现底面积和高都相等的长方体、正方体和圆柱的直观图。提问:这几种几何体的体积你都会求吗?你会求其中哪些几何体的体积?

二、创设情境,提出问题

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

2、创设问题情景。(课件显示)

如果要求圆柱形水泥柱子的体积,还能用刚才那样的方法吗?那怎样求圆柱的体积呢?我们要寻求一种更好的办法来解决!今天这节课,我们一起来研究圆柱的体积。(板书:圆柱的体积)

三、自主探索,合作交流

1、观察比较,建立猜想。

(课件出示底面积和高都相等的长方体、正方体和圆柱)

引导学生观察所出示的三个几何体,提问:

(1)这三个几何体的底面积和高都相等,它们的体积有什么关系?(2)长方体和正方体的体积一定相等吗?为什么?(3)圆柱的体积与长方体、正方体的体积可能相等吗?(4)小组讨论,并猜想圆柱体的体积计算公式。

2、汇报交流:

教师对学生的交流适当启发、点评,使学生意识到圆柱的体积与长方体、正方体的体积可能相等,也就是都可能等于底面积乘高。

3、实验操作,验证猜想。

引导学生实验操作:分组合作把圆柱切、拼成近似的长方体,并讨论以下问题:

(1)圆柱体通过切割、拼凑后,转化为近似的长方体,什么变了?什么没变?(2)拼成的近似长方体的体积与原来的圆柱体积有什么关系?(3)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(4)拼成的近似长方体的高与原来的圆柱的高有什么关系?(5)圆柱的体积计算公式是什么?用字母如何表示?

4、汇报交流:

(1)请学生说说是怎样把圆柱体转变成近似的长方体的。

(2)课件演示拼、凑的过程,同时(将圆柱底面等分成32份、64份……),让学生明确:底面分成的扇形越多,拼成的立体图形就越接近于长方体。(3)依次解决上面三个问题。

① 圆柱体通过切割、拼凑后,转化为近似的长方体,形状变了,表面积变了;体积不变。(板书:长方体的体积=圆柱的体积)②拼成的近似长方体的体积和原来的圆柱的体积相等 ③拼成的近似的长方体的底面积等于圆柱的底面积 ④拼成的近似的长方体的高就是圆柱的高。⑤因为 长方体的体积 = 底面积 × 高,所以 圆柱的体积 = 底面积 × 高

字母公式是 V柱 = S h(板书)

5、回顾圆柱体积的推导过程。(同桌互相说一说)

三、实际应用

1、基础练习

要求圆柱体积,必须知道哪些条件?

如果已知底面积和高,你们会求水泥柱子的体积吗?

例一:已知一根柱子的底面积为12.56平方米,高为5米。你能算出它的体积吗?

2、变式练习:

如果分别给了圆柱底面的半径、直径,周长,又都给了高,你们会求圆柱的体积吗? 课件出示:

(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积式多少升?

(2)一根圆柱形铁棒,底面周长是12.56厘米,长时100厘米,它的体积是多少?

3、实际应用

(1)一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?

(2)一个圆柱形玻璃鱼缸,里面装水,水面高35分米,鱼缸里放入一块石头后,水面升高到45分米,如果这个鱼缸的底面积是25平方分米,这块石头的体积是多少?

四、小结:

(1)谈谈这节课你有哪些收获。(2)解题时需要注意那些方面? 今天经过大家的共同努力,我们把生活中的问题转化成数学问题,联想已有的知识经验,寻找方法,归纳结论,解决了问题。这种学习的方法将会使我们终生受益。

五、课后拓展

布置作业:如果圆柱、正方体和长方体的底面周长和高都相等,谁的体积最大?

六、板书设计:

圆柱的体积

长方体体积 = 底面积 × 高

▏▏

▏▏

▏▏

圆柱体体积 = 底面积 × 高

V

=

Sh

第三篇:圆柱体体积教案

圆柱体的体积

目标:

1、使学生知道圆柱体体积公式的推导过程,理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。

2、再次培养学生利用转化的思想探索新知的意识。

重点:圆柱体的体积公式的推导。

难点:圆柱体体积公式的推导

教具和学具:教师准备课件一个,投影仪,学生准备圆柱形的橡皮1~2块。

重点包含要素的分析:

1、让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。

2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。

与其它教学重点的联系:掌握V=SH是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。

突出重点的策略:

1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。

2、学生有前面的推测,让学生小组合作用实物(学生自备圆柱体形状的橡皮)操作,验证猜想,探索体积的计算方法。

3、补充一个已知R求V的例题进一步突出求V必须先求S。突出V=SH的基础性。

教学过程:

一、复习引入:

1、体积的概念

2、我们学过求哪些几何图形的体积?怎样求?

(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)

3、同学们知道什么是圆柱体的体积吗?

4、想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。-----出课题

二、新课探索:

1、;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?

如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?

2、转化成什么图形,小组讨论。(猜想)

3、汇报猜想的结果。

4、动手实践:把圆柱体切拼成近似的长方体。

5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?

6、汇报,全班交流。

长方体的体积=圆柱体的体积

长方体的高=圆柱体的高

长方体的底面积=圆柱体的底面积

7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下:

长方体的体积=底面积×高

圆柱体的体积=底面积×高

V=Sh

8小结:正方体、长方体、圆柱体的体积的计算方法

V=Sh

三、公式的应用:

1、教学例题4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(1)带领学生画图。(培养学生会画图帮助分析的能力)

(2)让学生讲方法,尝试列式。教师板书过程。

2、补充例题:已知一个圆柱形的茶叶筒,底面半径是5厘米,这个茶叶筒的体积是多少?

学生讨论方法汇报,教师板书解题过程:

3、小结:对比以上两个题的解题过程,你觉得计算圆柱体的体积一定要根据条件先计算什么呢?(明确只要不是直接给出底面积,那就必须先由条件求出底面积。并补充V=лr2×h)

四、巩固练习:38页1、2

五、全课总结:今天你学到了什么?

第四篇:《圆柱体体积》说课稿

《圆柱体体积》说课稿

《圆柱体体积》说课稿1

一、设计理念

新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”因此本人认为教学中成功的关键在于:教师的“教”立足于学生的“学”基于这种理念来设计教学的。

二、说学情分析

根据新课程理念,本节课的教学设计主要意在两个方面:引导学生“玩”数学,帮助学生“悟”数学。

三、说设计思路

本节课主要采用操作实践、自主探索、合作交流、积极思考等活动方式,让学生从中感受、理解知识的产生和发展的过程,倡导发现数学的乐趣。

1、说教材

圆柱体的体积是在学生学习长方体的体积以及圆柱的认识的基础上进行教学的。内容包括圆柱体体积计算公式的推导和运用公式计算它的体积。

2、说教学目标及重难点

目标是:

(1)知道圆柱体体积的推导过程,会应用该公式计算圆柱的体积。

(2)初步建立空间观念和逻辑推理能力。

(3)知道知识间是可以互相转化的。

重点是圆柱体体积的推导公式和应用。

难点是推导圆柱体体积公式的过程。

四、说教法指导结合小学生的认知规律:我采用以下几种教法:

(1)启发引导,组织教学。

(2)直观演示,操作发现。

(3)运用迁移,循序渐进。

五、学法指导

(1)学会通过观察、比较、推理能力概括出圆柱体体积的推导过程。

(2)学会用旧知转化成新知,解决新问题的能力。

(3)学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

六、说教学流程

1、激趣设疑,导入新课

同学们,小丽的妈妈拿来了三个圆柱体,想考考小丽,让她算出这些圆柱的体积,小丽没有办法,想请同学们来帮忙,同学们你们有办法吗?

2、回忆圆面积公式推导过程以及长方体体积公式

1)用课件出示圆面积公式推导过程

2)板书长方体体积公式

3、猜想:圆柱体积的大小跟哪些条件有关?

1)、观察两组课件一组是高相等,底面积不等,体积有什么变化?另一组是底面积相等,高不等,体积怎样?

2)学生用学具将圆柱体体积转化成长方体体积

3)学生汇报,师课件演示

4)小组讨论

拼成的圆柱体的底面积与长方体底面积有什么关系?

拼成的圆柱体的高与长方体的高有什么关系?

拼成的圆柱体的体积与长方体的体积有什么关系?

5)学生汇报,师板书圆柱体体积公式

6)总结出知道底面半径,直径,底面周长和高怎样求体积。

4、归纳圆柱体体积公式

5、出示例4、例5

1)例4让学生说解题思路,师板书

2)例5放手让学生自学,发现问题及时解决

6、练习环节

1)基本练习

看图列式,并写出相应的公式。

(设计意图是巩固新知识,加深对新知识的理解。并转化为能力。)

2)变式练习

一根圆柱形木料,它的体积是6750立方厘米,底面积为75平方厘米,,它的高是多少?

(设计意图是培养学生的思维灵活性,防止受定势影响。)

3)拓展练习

把一根长1.5分米的圆柱形钢材截成三段后,如图,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?

(设计意图是培养学生思维的深度和广度)

4)升华练习

激趣设疑

同学们,小丽的妈妈拿来了三个圆柱体,想考考小丽,让她算出这些圆柱的体积吗?小丽没有办法,想请同学们来帮忙,同学们你们有办法吗?

(设计意图是通过学生亲自测量,仔细去算,使课堂真正活起来)

七、说板书设计

本节课板书简单、明了,既体现新旧知识之间的转化,又体现新旧知识之间的联系,具有指导性。艺术性。概括性。总结性。

《圆柱体体积》说课稿2

我说的内容是:

九年义务教育六年制小学教科书数学第十二册第三单元中的圆柱体的体积。因为这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。

教学目标是:

使学生知道圆柱体的体积公式推导过程;理解并掌握圆柱体的体积公式及相关的推论。并能正确运用公式解决一些简单的实际问题。通过对圆柱体体积公式的教学,加深学生对立体图形的认识,培养学生的观察能力,抽象和概括能力及综合运用能力,发展学生的空间观念,同时渗透一些关于极限的辨证唯物主义思想。

学习本节课应具备的旧知识是:

1、长方体的体积公式及推导过程。2、圆面积公式的推导过程。

在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。

因此根据本节课的特点我采用的教学方法是:

1、有目的的运用启发引导的方法组织教学。

2、采用演示实验的方法,让学生观察比较,从而发现规律,找出体积公式。

3、适当采用“尝试——失败——总结——再尝试——再总结”的方法,引导学生找到推导公式的合理方法。

4、利用多变的练习,加深学生对公式的理解,找到公式的根本内涵。但是要注意循序渐进,由易到难,由简到繁。

在学法指导上,主要是让学生学会观察、比较,归纳概括出体积公式。通过直观实验,吸引学生主动、认真观察图形的拼接过程,积极回答观察结果,主动参与到教学中去,并且在教师的启发下,进行归纳概括。培养学生的自学能力及概括能力。

本节课所需教具为:圆柱体割拼组合教具及事先写好习题的小黑板。教学一开始,首先复习。目的是:一是通过复习旧知识,为新课作好准备;二是引出新课。一开始先复习体积的概念及长方体的体积公式。这个练习可采用提问的方式,但是这些知识已学过较长时间,所以适当的时侯教师要加以启发提示。接下来,教师引导学生回忆长方体体积公式的推导过程,及圆面积公式的推导方法,为新课做准备。然后,提问:圆柱体的特点是什么?圆柱体的侧面积、表面积公式是什么?由于这些内容刚刚学过,学生很容易回答,可以提问基础较差的学生,并加以鼓励,使他们树立信心,提高兴趣,以便学习新课。通过以上复习,巩固了旧知识,为学习新知识做好了铺垫,同时调动了全体学生的学习兴趣。利用这一有利时机,教师及时引导、设疑:圆柱体也是立体图形,也会占有一定的空间,大家一定很想知到道怎样求出这个空间的大小,好,今天我们就来学习求它的方法。——板书课题:圆柱体的体积这样就顺利转入了新课的学习。

这时教师出示圆柱体模型。首先引导学生用长方体公式的推导方法尝试。提问:“我们学过的长方体体积是用单位体积的小正方体块来量出的,现在我们也用同样的方法来量一下,现在这个圆柱体的体积是多少?”学生反复尝试后回答:“无法量出。”这时教师再问:“什么地方量不出来?为什么?”学生回答:“圆柱体的侧面是曲面,无法量出。”在学生尝试失败的基础上,促使他们改变思路,去寻找新的方法。这样充分利用学生的好奇心理,调动学生情绪,转入圆柱体体积公式的教学。教师启发提问:“圆柱体上下两面是什么形?圆面积公式是怎么得到的?”通过学生的回答,引出新思路:用割拼的方法将它转化为其他的图形。

得到了新的方法以后,教师进行演示实验

1、先将圆柱沿底面平分割成8等份,对拼成一个近似长方体。学生观察割拼过程。

教师提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”学生回答后,接着再进行演示实验

2、将圆柱体沿底面平分16等份,再拼成近似的长方体。

再问:“这次是不是更象长方体了?”这时教师启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”

教师总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”然后及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”“长方体的体积是怎样计算的?”学生回答:“底面积乘以高。”“那么圆柱体是否也可以这样算呢?”学生回答:“是的。”

这时教师根据学生的回答,及时板书这两个公式。通过以上的教学,引导学生归纳概括出了圆柱体的体积公式。这样先通过复习做知识的铺垫,然后由学生进行尝试,充分运用思维的迁移规律,用圆面积公式的推导方法搭起了桥梁,顺利地实现了本节课的第一个目标。并且在推导过程中渗透了关于极限的辨证唯物主义思想。

学生通过尝试得到了成功的喜悦,思想高度兴奋。教师及时利用这一时机,将公式向深处拓展。设问:“如果不知道圆柱体的底面积和高,怎么求体积?”学生考虑,教师出示尝试题:

1、已知圆柱体的底面半径和高,怎样求体积?

2、已知圆柱体的底面直径和高,怎样求体积?

3、已知圆柱体的底面周长和高,怎样求体积?

4、已知圆柱体的侧面积和高,怎样求体积?

学生分组讨论。讨论完毕后,每组选一名代表回答,其他同学做适当补充。学生回答完毕后,教师及时进行总结,并且板书有关公式的推论。通过以上练习,避免了学生只注意了公式的表面特征,而忽略了公式的本质特征。使学生明确,不论条件怎样变化,最终都要归到底面积乘以高上来。从而使学生理解了本公式的内涵,为灵活运用公式做好了知识的准备。最后要求学生用字母表示公式。由于此方法学生早已熟悉,所以可全班集体回答。

学生理解和掌握了公式后,教师及时出示习题,指导学生将公式应用于实际:

(出示准备好的小黑板)

例4、一根圆柱形钢材,底面面积是50平方厘米,高是2·1米。它的体积是多少立方厘米?

例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?

提问:“这两道题是否要进行单位换算?各应选用什么公式?”学生回答完毕后,一起独立完成。教师巡视检查,发现问题,及时补救。

最后,对本节课进行小结。提出应用公式时应注意的问题:1、仔细审题,弄清条件的变化。2、单位名称要统一。

布置课后作业。本节课到此结束。

《圆柱体体积》说课稿3

一、说教材

1.教学内容

本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。

2.本节课在教材中所处的地位和作用

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。

4.教学目标

(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。

(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。

(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

二、说教法

从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。

三、说教学过程

本节课的教学过程分为六个教学环节,主要包括:

1、复习引导,揭示课题。

明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。

2、观察比较,建立猜想。

在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。

3、激励思考,提出验证的方法。

有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。

4、自主探究,合情推理。

在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:

小组讨论纲要:

(1)用 方法,把圆柱体转化成了 体。

(2)在这个转化的过程中, 变了, 没有变。

(3)通过观察比较,你发现了什么?

(4) 怎么进行合情推理?

(5)怎样用简捷的形式表示你推导出来的公式呢?

把课堂还给学生,教师的角色是组织和引导。

5、学以致用,解决实际问题。

应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。

6、全课小结,提升认识水平。

在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的.三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。

四、说教学反思

在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。

这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。

当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。

《圆柱体体积》说课稿4

大家好!今天,我说课的内容是北师大版小学数学六年级下册《圆柱的体积》。

一、把握教材,目标定位

《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:

1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学的重点和难点:

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

二、把握学情,选择教法

(一)学情分析

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

(二)、选择教法,实践课题。

《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

三、教学策略的选择。

现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。

四、基于以上构想,我确定本节课的教学程序为:

教师活动: 创设情境 协作指导 拓展延伸

学生活动: 操作感悟 自主探究 实践应用

具体为三个环节进行教学:

1. 直观演示,操作发现

让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2. 巧设疑问,体现两“主”

教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3. 运用迁移,深化提高

运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

本节课的教学,使学生掌握一些基本的学习方法

1. 学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2. 学会利用旧知转化成新知,解决新问题的能力。

3. 学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

具体教学程序:

(一)、情景引入: 1、复习:大家还记得长方体、正方体的体积怎样求吗?让学生说出公式。出示圆柱形水杯。(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

(2)你能想办法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

2、创设问题情景。

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。

(二)、新课教学:

设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。

根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我主要从以下几个方面着手:

(1) 引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3) 充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

3. 运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(三)巩固练习,检验目标

1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。

2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

3.变式练习:已知圆柱的体积、底面积,求圆柱的高。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。

4.动手实践:让学生测量自带的圆柱体。

教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(四)总结全课,深化教学目标

结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。

《圆柱体体积》说课稿5

教学内容:数学第十二册《圆柱的体积》

教材分析:这部分内容包括圆柱体积的推导公式,在教学时,先回忆前面学习过的圆面积的转化,由此推想圆柱的体积能否转化成已经学习过的立体图形,求出它的体积。这部分内容重点是让学生理解圆柱体积公式的推导过程,通过教具演示和学生动手操作弄懂可以将圆柱转化成以前学习过的长方体(近似),再根据长方体的体积等于底面积乘得到圆柱的体积也应该是它的底面积乘高。

教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。

教学重点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。

教学难点:掌握圆柱的体积计算方法。理解圆柱体积公式的推导过程。

教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。

教学设想:利用教具演示将圆柱进行切割拼凑的方法,让学生理解将圆柱转化成长方体,再依据长方体的体积计算方法推导出圆柱体积的计算方法。通过例题教学让学生进一步掌握圆柱体积的计算公式。

教学过程:

一、复习

1、圆柱的侧面积怎么求?

(圆柱的侧面积=底面周长×高。)

2、长方体的体积怎样计算?

学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

板书:长方体的体积=底面积×高

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?

二、导入新课

教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?

先让学生回忆,同桌的相互说说。

然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的

计算公式导出求圆面积的计算公式。

教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

让学生相互讨论,思考应怎样进行转化。

指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。

教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。

板书课题:圆柱的体积

三、新课

1、圆柱体积计算公式的推导。

教师出示一个圆柱,提问:这是不是一个圆柱?(是。)

教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:

“大家看,这是不是一圆?”(是。)

“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。

教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?

指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?”

学生:长方形。

教师:大家再看看整个圆柱,它又被拼成了什么形状?

(有点接近长方体:)

然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

教师:

把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?

引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

教师:“而长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。

教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?

通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

板书:圆柱的体积=底面积×高

教师:如果用V表示圆柱的体积,s表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;V=sH

2、教学例4。

出示例4。

(1)教师指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。

(2)出示下面几种解答方案,让学生判断哪个是正确的?

①V=sH=50×2.1=105

答:它的体积是105立方厘米。

②2.1米;210厘米

V=sH=50×210=10500

答:它的体积是10500立方厘米。

③50平方厘米=0,5平方米

V=sH=0.5×2,1=1.05

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=sH=0.005×2.1=0.0105立方米

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。

三、练习:

1、做“做一做”的第1题。

让学生独立做在练习本上,做完后集体订正。

2、完成练习八的1、2题

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

第五篇:圆柱体表面积教案

圆柱体表面积教案

教学目标:

1、学习理解圆柱体侧面积和表面积的含义。

2、通过观察思考、交流讨论推导并掌握求圆柱的侧面积、表面积的方法,并能解决一些实际问题。

教学重点:掌握求圆柱的侧面积、表面积的方法。

教学难点:会运用圆柱侧面积、表面积方的计算法解决实际问题。

一、复习导入: 师:昨天我们认识了立体图形中的一位新朋友——圆柱体。谁来说说你对它的了解。

其实,圆柱还有许多的奥秘,你打算研究它的什么? 板书课题。

回忆长方体和正方体的表面积?

二、猜想圆柱表面积

1、请大家猜想一下,什么是圆柱的表面积呢?

学生:圆柱的表面积等于一个侧面的面积加上两个底面的面积。

2、验证猜想

3、动画演示圆柱展开图

三、小组合作、研究圆柱侧面积

(1)、利用手中的材料,探究圆柱的侧面积计算公式。

(2)、观察对比

观察展开的图形各部分与圆柱体有什么关系?(3).小组交流

能用已有的知识计算它的面积吗?

(4)、小组汇报。(选出一个学生将已经展开的图形贴到黑板上)

这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积=长 ×宽

圆柱的侧面积=底面周长×高

S 侧

C ×

h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h(5)师:如果圆柱展开是平行四边形,是否也适用呢?(6)学生再次动手操作,动笔验证,得出了同样适用的结论。

四、巩固练习

1、求下面圆柱的侧面积

(1)底面周长是1.6米,高是0.7米。(2)底面半径3.2分米,高5

2、出示例4,(1)一顶圆柱形厨师帽,高30厘米,帽顶直径20厘米,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数)(2)思考:求至少要用多少面料,就是求帽子的什么? 生:就帽子的表面积

(3)这个帽子的表面积是完整的表面积吗?它包括哪些面的面积?(帽子的一个底面是空的,因此这个帽子的表面积不是完整的表面积,它包括侧面积和一个底面积)。(1)、学生尝试列式(2)、生汇报

五、课堂小结

通过今天的学习,你有什么收获?

下载八年级切面圆柱体word格式文档
下载八年级切面圆柱体.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    插座圆柱体教案

    教案 - 插座圆柱体(感觉教育) 直接目的:辨别高低、大小、粗细、长短的视觉记忆;培养发展视觉区别体积的判断能力;学习分辨三度空间的概念;三次元的学习教育。2. 间接目的:逻辑、思......

    认识圆柱体球体

    大班科学活动:《认识球体和圆柱体》 1课时 教学目标:1.认识球体和圆柱体,并比较二者的不同。 2.通过操作、观察、比较,在做做玩玩中幼儿巩固所学。 教学准备:1、卡纸制作的圆形......

    《圆柱体》教学设计

    《圆柱体》教学设计 《圆柱体》教学设计1 教学目标:1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算......

    学习面向切面编程的总结

    北大青鸟中关村 AOP(面向切面编程) 可以说是OOP(Object-Oriented Programing,面向对象编程)的补充和完善。OOP引入封装、继承和多态性等概念来建立一种对象层次结构,用以模拟公共......

    《圆柱体的体积》教案

    圆柱的体积教案 --------永安小学文显成 教学内容 西师版六年级数学下册第34、35页。 教学目标 1. 知识与能力目标: 结合具体的情境和操作活动,进一步理解体积的含义。 探索......

    圆柱体的透视教案

    圆柱体的透视教案 一、概述: 一、教学目的: 1.了解圆柱体在直立和放倒情况下的透视规律。 2. 使学生学会运用正确的方法分析和表现圆柱体。 二、教学重难点: 重点:1、了解圆柱体......

    幼儿园说课稿认识圆柱体

    幼儿园说课稿:《认识圆柱体》说课设计及教案 来源:本站原创 2014-04-23 18:01:34 一、说教材 幼儿在日常生活中常常接触到,但是幼儿对圆柱体的认圆柱体是一种常见的立体几何图......

    圆柱体体积教学设计

    圆柱体体积教学设计 陶营镇中心小学 刘交宾 教学内容:苏教版十二册圆柱的体积 设计理念: 兴趣是学生学习的动力,创设有趣的情境可以激发学生的学习兴趣。所以,在本节课教学中,我......