第一篇:数形结合思想方法的内涵与作用
数形结合思想方法的内涵与作用
“数缺形,少直观;形缺数,难入微”,这是华罗庚教授对数形结合思想的深刻、透彻的阐释。具体地说,就是在解决数学问题时,根据问题的背景、数量关系、图形特征,或使“数”的问题,借助于“形”去观察;或将“形”的问题,借助于“数”去思考,这种解决问题的思想称为数形结合思想。
事实上,数形结合思想,就是用联系的观点,根据数的结构特征,构造出与之相适应的图形,并利用图形的性质和规律,解决“数”的问题;或将图形的部分信息或全部信息转换成“数”的信息,弱化或消除“形”的推理,从而将“形”的问题转化为数量关系来解决。
给“数”的问题以直观图形的描述,揭示出问题的几何特征,就能变抽象为直观;给“形”的问题以数的度量,分析数据之间的关系,更能从本质上深刻认识“形”的几何属性。
数形结合思想在课本中,具有突出的地位。比如:在集合运算中的应用。涉及集合的运算,常常采用文氏图,数轴等形象、直观的方式;在研究函数时,已知函数的解析式,作出函数的图象,再通过函数的图象研究函数的性质;或通过图、表的分析,抽象出变量之间的规律,再通过变量之间的规律的研究,进一步掌握图、表的变化趋势;运用数形结合思想,构出适当的图形证明不等式和解不等式往往十分简捷。
又如,笛卡儿用数形结合思想将长期对立的代数与几何有机结合,创立了数学的一大分支——解析几何,构建曲线与方程的理论,集中解决了两大问题:已知曲线求方程和通过方程研究曲线的性质。
下面举例说明数形结合的奇妙。
例1:已知实数 满足,求证:
d的几何意义是直线 : 的点与定点M(-2,-2)的距离,由点M到直线 的距离为,根据平面几何的知识知,即。
例2:已知,且,求证:。
分析:要解决本题是很容易的,但我们从“形”的角度来认识和解决这个问题是十分有趣的。记,那么d的几何意义是在空间直角坐标系中,原点O(0,0,0)到平面 上任意一点的距离。设平面 与空间直角坐标系的x轴、y轴、z轴的交点分别为A、B、C,则OA=OB=OC=1,那么正三棱锥O—ABC的侧棱为1,侧面的顶角均为90°(如图)。由等体积法易得,点O到平面ABC(即平面)的距离为。“数”与“形”是数学研究的两个基本对象,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物。利用“数形结合”方法能使“数”和“形”统一起来,借助于“形”的直观来理解抽象的“数”、运用“数”与“式”来细致、入微地刻画“形”的特征,直观与抽象相互配合,取长补短,从而顺利、有效地解决问题。
“数无形时少直觉,形少数时难入微”形象生动、深刻地指明了“数形结合”思想的价值,也揭示了数形结合思想的本质。
“数形结合”的方法就是把数学问题中的运算、数量关系等与几何图形与图象结合起来进行思考,从而使“数”与“形”各展其长,优势互补,相辅相成,使逻辑思维与形象思维完美的统一起来。
第二篇:如何课堂教学中渗透数形结合的思想方法
如何课堂教学中渗透数形结合的思想方法
数学思想方法很多其中数形结合是小学数学中常用的、重要的一种数学思想方法。数形结合是通过数形之间的相互转化,把抽象的数量关系,通过形象化的方法,转化为图形,从图形中直观地发现数量之间存在的内在联系,解决问题。应用数形结合的思想方法,既能培养学生的形象思维能力,又促进逻辑思维能力的发展。下面就我在教学中如何渗透数形结合的思想方法的做法和体会:
一、在观察中渗透数形结合的思想。观察是学生学习活动的基础,是学生获取知识的开始。教师在低年级就应该有意识地让学生观察数与形之间的联系。如:如在教学进位加法时,“42+58= ”我通过演示42根小棒加58根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过演示小棒的方法教学,2和8加起来时10,又是1捆,4捆加5捆再加刚刚的1捆是10捆,可以捆成一大捆即100。学生的整个观察过程展现数与形之间的内在关系,帮助学生理解的进位加法的意义。同时激发了学生的兴趣。
二、在操作中渗透数形结合的思想。小学生思维以具体形象为主,教材为学生提供了许多实践操作的机会,我们要重视学生操作,真正的放手让学生操作。让操作与思维联系起来,让知识在学生操作中产生。比如,低年级有一道题:“小兔从家出发,已经走了52米,这时看到路标上写着离商店还有21米,小兔家离学校有多少米?”我发现有的学生能列出52+21=73(米),但是他们不能清晰地解释为什么要两个数相加。于是教学时,先让学生在作业本上用笔画出整条路线,再用笔尖模仿小兔的行走路线到路边的广告牌时,停下别动。问学生:“离商店还有21米”是那一段?为什么52+21=73(米)的问题就迎刃而解了,重要的是学生在操作中体验领悟到了数形结合的思想。高年级解决问题的题型中,用线段图帮助分析题意。例如:“小强每分钟走65米,小丽每分钟走70米,经过4分钟,两人在校门口相遇,他们两家相距多远?” 我让学生画出线段图,通过画线段图帮助学生分析题中的数量关系,理清解题思路。从线段图中,可以清楚地看到他们两家相距的路程就是小强家到学校的路程加上小丽家到学校的路程。由于小强到学校用了4分钟,即4个65米,就是65×4米。小丽到学校的路程用了4分钟,每分钟70米,即4个70米,就是70×4米,他们两家的路程就是65×4+70×4米;也可以这样看:他们两个同时走1分钟的路程是(65+70)米,同时走4分钟的路程是(60+70)×4米。通过了数形结合的思想方法,能轻松地让学生理解数量关系。我认为老师要分阶段、有目的地培养学生画图分析数量关系。如果从低年级到高年级,教师都注重培养学生分析已知条件和问题,从低年级的看图、说图意、画基本简单的线段图,到中高年级画稍为复杂的线段图、较复杂的线段图。学生的解题方法、解题能力都会得到提高。
通过数形结合,有助于学生对数学知识的记忆。帮助学生理解抽象的数量关系、数学概念,使问题简明直观,甚至使一些较难的问题迎刃而解。既培养学生的形象思维能力,又促进逻辑思维能力的发展。
第三篇:学习心得数形结合
数形结合学习心得
低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。
又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。
再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。
30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。
30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。
30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。
在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。
第四篇:高考数学“数形结合”解题思想方法、知识点及题型整理
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
高考数学总复习第三讲:数形结合
一、专题概述---什么是数形结合的思想
数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.
恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.
数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.
二、例题分析
1.善于观察图形,以揭示图形中蕴含的数量关系.
观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.
例1.函数的图象的一条对称轴方程是:
(A)(B)(C)(D)
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.,观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.
例2.问:圆个?
分析 由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两
上到直线的距离为的点共有几条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.
将圆方程变形为:心到定直线L的距离为,知其圆心是C(-1,-2),半径,由此判定平行于直线L且距离为,而圆的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)
启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.
3.切实把握“数”与“形”的对应关系,以图识性以性识图.
数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
成,相互转化.
例3.判定下列图中,哪个是表示函数图象.
分析 由=,可知函数
是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.
例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().
分析 由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).
例5.若复数z满足,且,则在复平面上对应点的图形面积是地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
多少?
分析 满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)
因此所求图形的面积为: 4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.
在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.
例6.已知C<0,试比较的大小.
分析 这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:
例7 解不等式
解法一(用代数方法求解),此不等式等价于:
解得
故原不等式的解集是
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
解法二(采用图象法)设即
对应的曲线是以是一直线.(如图)
为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.
借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.
例8 讨论方程的实数解的个数.
分析:作出函数的图象,保留其位于x轴上方的部分,将位于x轴下方的部分沿x轴翻折到x轴上方,便可得到函数交点个数即可. 的图象.(如图)再讨论它与直线y=a的 ∴当a<0时,解的个数是0;
当a=0时或a>4时,解的个数是2; 当0<a<4时,解的个数是4;
当a=4时,解的个数是3.
9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()
(A)1个(B)2个(C)3个(D)4个
分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
∴过(外,过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此)点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故
正确答案为(D)
例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()
(A)1个(B)2个(C)3个(D)4个
分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为
∴过(外,过(正确答案为(D))点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此)点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故例10.设点P(x,y)在曲线 解 曲线
上移动,求
是中心在(3,3),长轴为的最大值和最小值.,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)
消去y得
解得:
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
故的最大值为,最小值为
(其中a,b,c是正常数)的最小 例11.求函数值.
分析 采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图
设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则
其中的等号在P为线段AB与x轴的交点外,即 故y的最小值为时成立.
例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.
分析 在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决. 解,设R点对应的复数为: 则,P点对应的复数为
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
故即由点在椭圆上可知有:
整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.
三解题训练
1.求下列方程实根(1)的个数:
(2)
(3)
2.无论m取任何实数值,方程(A)1个(B)2个(C)3个(D)不确定 3.已知函数(A)b∈(-∞,0)(B)b∈(0,1)
(C)b∈(1,2)(D)b∈(2,+ ∞)的实根个数都是()的图象如右图则()
4.不等式的解集是()
(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式
一定有解,则a的取值范围是()
(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1] 6.解下列不等式:
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
(1)(2)
7.复平面内点A、B分别对应复数2,2+i,向量,则点C对应的复数是_______.
绕点A逆时针方向旋转至向量 8.若复数z满足|z|<2,则arg(z-4)的最大值为___________ 9.若复数z满足
10.函数定点的坐标是()(A)(–(C)(–2的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两,–,2)()(2,2)(B)(–)(D)(2,)(,–),2),–2)(–2 11.曲线与直线的交点个数是().
(A)0(B)1(C)2(D)3 12.曲线()
与直线
有两个交点,则实数k的取值是(A)13.已知集合(B)(C),(D)
满足,求实数b的取值范围.
14.函数的值域是()
地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625
Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中!
(A)(B)
(C)(D)
四、练习答案
1.(1)2个(2)63个(3)2个
提示:分别作出两个函数的图象,看交点的个数.
2.B、提示:注意到方程右式,是过定点(,0)的直线系.
3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而3a<0,故选(A)4.A 5.A 6.(可以利用图象法求解)
(1)x≤-1或0 可知b=-地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625 Peter高分英语家教火箭式提分有“秘方”,叫板育才、实验、二中! 12.C 13. 14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=kAB,而A点为圆x2+y2=1上的动点 地址:铁西区富工二街36号1门 电话:31688948 31801965 25769625 taoti.tl100.com 你的首选资源互助社区 高考数学思想方法专题讲义3--数形结合的思想 1.设f(x)1x2,a,bR,且a≠b,求证:f(a)f(b)ab. 2.求下列函数的最值:(1)y(2)y2x25x42x22x1的最小值; x22x26x26x13的最大值. p4的实数p,使得x2px4xp3恒成立,求x的取值范围. 3.对于满足04.已知z1,求u2zi54i的最值. x24a1有相异实根的个数. 5.讨论方程6.已知a1,b1,求证:ab1. 1abq),求它的第pq项和第pq项. . 7.已知等差数列的第p项为q,第q项为P(p8.求证:2a12a2b12b22a1b1a2b29.在△ABC中,已知a=10,c-b=8,求证:tg10.设zC,aR,且az11.已知sinsinBC1ctg. 2290,求证:zazaz为纯虚数. 11,coscos,求tg(). 432,求zu24v21的最小值. 12.已知u,v,是正数,且uv13.求函数y14.已知m3(x2)8x的值域. n0,求证:m2n22mnn2m. 215设定点M(-3,4),动点N在圆xy24上运动,以OM,ON为两边作□MONP,求P点的轨迹. 表示两曲线有公共点,求半径r的最值. 22x4y4,16.已知222(x4)yrx2y2217.当m,a,b满足什么条件时,椭圆221(a0,b0)与抛物线yxm有四个交点? ab数形结合的思想参考答案 1.将,1a2,1b2分别看做两直角三角形的斜边,于是可以构造图2-1.设Rt△POA中,PO=1,OA=a,则 PA taoti.tl100.com 你的首选资源互助社区 1a2.在Rt△POB中,OB=b,则 PB1b2.在△PAB中,PAPBAB,于是可得f(a)f(b)ab(当ab结论一样成立) 2.(1)提示:配方得y557112((x)2(x)2),可视为P(x,0)分别与A(441624,74),B(1,21)这两点的距离之和.由于A,B分别位于x轴的上方和下方,显然当P在A,B连线与x轴交点时PAPB最短,最小值为22AB230272(2)提示:配方得y(x1)252(x3)222,可视为P(x,0)分别与A(-1,5),B(3,2)的距离之差的最大值,由于A,B位于x轴的同旁,由几何知识知,P在AB与x轴交点的位置上,最大值为 APBP最大,AB5.AB,直线AB的方程为y25217.令,y0,得xx31332.故点P位于(173,0)时,ymax3.原不等式整理成(x1)P(x4x3)>0,设f(b)(x1)p(x24x3).可视为p的一次函数,由图象 2f(0)0,x4x30,x3或x1 可知,f(p)在[0,4]恒大于零,只需用即2f(4)0,x104.u52izi22,因此,u表示单位圆 (-2,-z1上的点z与点A 52)的距离的2倍.由几何知识知,AB,AC分别是最小值、最大值,即 umax2AC2(OAOC)412,umin2AB2(OAOB)412 taoti.tl100.com 你的首选资源互助社区 5.提示:在同一坐标系中作出y同的根;当ax24和ya1的图象如图,从图象可以看出:当a1,a3时,方程有两个不3时,方程有三个不同的根;当1a3时,方程有四个不同的根;当a1时,方程没有根 ab1ab(a1)(b1)AP1ab6.设数轴上三点A,P,B的坐标分别为-1,1,则=.∵ a1,b1,ab1ab(a1)(b1)PB11ab∴ 0.即P是AB的内分点,于是17.由等差数列的通项公式anabab1即1 1ab1ab,B(q,p)是平a1(n1),得点(n,an)在直线ya1(x1)d上.设A(p,q)面直角坐标系中的两点,则AB的直线方程为yqpq(xp),即ypqx.∵ 点(n,an)在an这条直线上,qp∴ anpqn.于是,apq0,apq2q 8.提示:设A(a1,a2),B(b1,b2),C(b1,a2),则原式左边=9.如图,以线段BC的中点O为原点建立直角坐标系,∵ OAOBABACBC=右边 BC10,ABAC8,∴ A(x0,y0)在双曲线 .∵ 55x2y21的右支上.从而,由焦半径公式得ABx04,ACx0444169ACcoCs5x0,=ABcosB5x,∴ tgBCctg22 taoti.tl100.com 你的首选资源互助社区 BCBBCcos2sincos2cos222222sinB1cosCBCBCC1cosBsinCcossin2cos22sincos222225x045x0x1140 5x045x09(x01)94sinACACcosCABABcosB= 10.在复平面内,z,a,-a所对应的点分别为P,A,B,∵ ∴ A、B在实轴上. z0,故P不可能在坐标原点,即AB的中点.又aR,a0,zazaAPBP动点P的轨迹为线段AB的中垂线除去AB的中点P点的轨迹为虚 16轴(除去原点)z为纯虚数. 11.设A(cos,sin),B(cos,sin,则A,B在单位圆上,连结AB.若C是AB的中点,则点C的坐标为(),∠DOC=,1),连结OC,则OC⊥AB.设D(1,0),连结OA,OB,则有∠DOA=,∠DOB=812tg24832∠DOC=,tg() 14721tg262,tg 2=tg 12.如图,在平面直角坐标系xOy中,设点(u,2),B(-v,-1),则 zOAOBAB,而 uv42AB(uv)2(21)2223213,v即z13,等号成立条件uv2,.即u,2133 时成立.故zmin taoti.tl100.com 你的首选资源互助社区 13 13.令x2t,原函数为y23t10t2(t0),设vy3t,则 ①v3ty, 2v10t(t0).方程①表示斜率为-3的直线,方程②表示四分之一圆.原问题转化为过圆②上的点,求①中直线截距的取值范围.如图,过圆上 30y31.解得y2∴ 10.的点(0,时,截距最小,ymin10.当直线与圆②相切时,其截距最大,即1010) ② 10y210 14.如图,在Rt△ACB中,AB=m,BC=n,则AC∴ 又∵ m2n2.∵ ACBCAB m2n2nm. ① mn0,∴ mnn2,2mn2n2,2mnn2n2,即2mnn2n ② 由①、②知,m2n22mnn2m taoti.tl100.com 你的首选资源互助社区 16.如图,设P点所对应的复数为 xyi,M所对应的复数为34i,N所对应的复数为z1,.即 z12.∵,∴ OPOMON,∴ xyi34iziz1(x3)(y4)i,∵ z12(x3)2(y4)24.但点M,O,N 46x与x2y24,解得x1,358686868y1;x2,y2.因此,所求轨迹为圆(x3)2(y4)24,但应除去两点(,),(,)5555555共线时,不能构成平行四边形,由y x2217.将方程x4y4化为标准形式2y1,它表示中心在(0,0),长半轴为2且在x轴上,短半轴为1的椭圆.而 222方程(x4)20)的同心圆系,如图,可知当2r6时,两曲线有公共点.即rmax6,rmin2 y2r2表示圆心在A(4,taoti.tl100.com 你的首选资源互助社区 x2xm,b2b22222f(y)yymb0.要使两曲线有四个交点,方程f(y)0在(-18.由x消去x,得y22aa221,bab2b,b)内有两个不同的实根.由于函数f(y)为开口向上的抛物线,而对称轴方程为y2a2.因此,有 b2f(2)0,2ab2a2,22bb22b2b,b2即两曲线有四个交点的充要条件为b2a,且bma4a222abma2.4af(b)0,f(b)0第五篇:高考数学思想方法专题讲义3--数形结合的思想