中考冲刺:数形结合问题(基础)

2020-07-25 02:40:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《中考冲刺:数形结合问题(基础)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考冲刺:数形结合问题(基础)》。

中考冲刺:数形结合问题(基础)

一、选择题

1.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:

①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()

A.1个

B.2个

C.3个

D.4个

2.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲)然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()

A、B、C、D、二、填空题

3.实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的序号为____________.①b+c>0

②a+b>a+c

③ac<bc

④ab>ac

4.(2016•通辽)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:

①abc<0

②b2﹣4ac>0

③4b+c<0

④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2

⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号)______.

三、解答题

5.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y与x的函数解析式;

(2)如果每毫升血液中含量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间有多长?

6.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)你认为图2中的阴影部分的正方形的边长等于

_____;

(2)请用两种不同的方法求图2中阴影部分的面积.①

______②_______;

(3)观察图2你能写出下列三个代数式之间的等量关系吗?

(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.

(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.

7.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:

(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;

(2)请帮用户计算,在一个月内使用哪一种卡便宜.

8.(长宁区二模)如图,一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(2,1),点B的坐标(﹣1,n).

(1)分别求两个函数的解析式;

(2)求△AOB的面积.

9.请同学们仔细阅读如图所示的计算机程序框架图,回答下列问题:

(1)如果输入值为2,那么输出值是多少?

(2)若要使输入的x的值只经过一次运行就能输出结果,求x的取值范围;

(3)若要使开始输入的x的值经过两次运行才能输出结果,那么x的取值范围又是多少?

10.观察如图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形.S1,S2,S3,…Sn依次表示正方形的面积,每个正方形边长与它左边相邻的直角三角形斜边相等),再回答下列问题.

(1)填表:

直角边

A1B1

A2B2

A3B3

A4B4

AnBn

长度

(2)当s1+s2+s3+s4+…+sn=465时,求n.

11.某报社为了了解读者对该报社一种报纸四个版面的认可情况,对读者做了一次问卷凋查,要求读者选出自己最喜欢的一个版面,并将调查结果绘制成如下的统计图,请你根据图中提供的信息解答下列问题.

(1)在这次活动中一共调查了多少读者?

(2)在扇形统计图中,计算第一版所在扇形的圆心角度数;

(3)请你求出喜欢第四版的人数,并将条形统计图补充完整.

答案与解析

【答案与解析】  一、选择题

1.【答案】C;

【解析】∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;

∵x=1时,y<0,∴a+b+c<0,∴②不正确;

∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;

∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;

综上可得,正确结论有3个:①③④.

2.【答案】D;

二、填空题

3.【答案】②③④;

4.【答案】②③⑤;

【解析】由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.

∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.

∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,﹣=﹣1,∴b=2a,c=﹣3a,∴4b+c=8a﹣3a=5a<0,故③正确.

∵B(,y1)、C(,y2)为函数图象上的两点,点C离对称轴近,∴y1<y2,故④错误,由图象可知,﹣3≤x≤1时,y≥0,故⑤正确.

∴②③⑤正确.三、解答题

5.【答案与解析】

解:

(1)当x≤2时,设y=kx,把(2,6)代入上式,得k=3,∴x≤2时,y=3x;

x≥2时,设y=kx+b,把(2,6),(10,3)代入上式,得

k=,b=

∴x≥2时,y=x+

(2)把y=4代入y=3x,得x1=

把y=4代入y=x+

得x2=

则x2-x1=6(小时).

答:这个有效时间为6小时.

6.【答案与解析】

解:

(1)由图可知,阴影部分小正方形的边长为:m-n;

(2)根据正方形的面积公式,阴影部分的面积为(m-n)2,还可以表示为(m+n)2-4mn;

(3)根据阴影部分的面积相等,(m-n)2=(m+n)2-4mn;

(4)∵mn=-2,m-n=4,∴(m+n)2=(m-n)2+4mn=42+4×(-2)=16-8=8;

(5)x2+2x+y2-4y+7,=x2+2x+1+y2-4y+4+2,=(x+1)2+(y-2)2+2,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2≥2,∴当x=-1,y=2时,代数式x2+2x+y2-4y+7的最小值是2.

故答案为:(1)m-n;(2)(m-n)2,(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.(4)8

(5)

最小值是2.7.【答案与解析】

解:

(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=,b=29,∴y1=x+29,又24×60×30=43200(min)(属于隐含条件)

∴y1=x+29

(0≤x≤43200),同样求得y2=x

(0≤x≤43200);

(2)当y1=y2时,x+29=x,x=;

当y1<y2时,x+29<x,x>.

所以,当通话时间等于min时,两种卡的收费一致,当通话时间小于 min时,“如意卡便宜”,当通话时间大于 min时,“便民卡”便宜.

8.【答案与解析】

解:(1)一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(2,1),解得

一次函数的解析式是y=x﹣1,反比例函数的解析式是y=;

(2)当x=0时,y=﹣1,S三角形AOB=|﹣1|×2+|﹣1|×|﹣1|

=1+

=.

9.【答案与解析】

解:

(1)依据题中的计算程序列出算式:3×2+1,∵3×2+1=7,7<9,∴应该按照计算程序继续计算,3×7+1=22>9,∴如果输入值为2,那么输出值是22.

(2)依题意,有3x+1>9,解得

x>;

(3)依题意,有

解得<x≤.10.【答案与解析】

解:

(1),直角边

A1B1

A2B2

A3B3

A4B4

AnBn

长度

(2)S1=()2=2,S2=()2=3,S3=22=4,S4=()2=5,……..Sn=()2=n+1;

s1+s2+s3+s4+…+sn=465可得:1+2+3+4+5+…+n=465,(1+n)

×n=465

解得:n=-31(不合题意舍去)或n=30,故:

n=30.

11.【答案与解析】

解:

(1)这次活动中一共调查了500÷10%=5000(人);

(2)第一版所在扇形的圆心角度数=360°×(1-20%-40%-10%)=108°;

(3)喜欢第四版的人数是:5000×20%=1000(人),如下图所示:

下载中考冲刺:数形结合问题(基础)word格式文档
下载中考冲刺:数形结合问题(基础).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考冲刺:数形结合问题(提高)

    中考冲刺:数形结合问题(提高)一、选择题1.(2016•黄冈模拟)如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时......

    2013高考冲刺2:数形结合

    高考冲刺:数形结合热点分析 高考动向 数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。高考中利用数形结合......

    学习心得数形结合

    数形结合学习心得 低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的......

    中考冲刺:几何综合问题(基础)

    冲刺:几何综合问题(基础)一、选择题1.(2016•天水)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后......

    中考冲刺:代数综合问题(基础)

    中考冲刺:代数综合问题(基础)一、选择题1.如图所示,已知函数和y=kx(k≠0)的图象交于点P,则根据图象可得,关于的二元一次方程组的解是A.B.C.D.2.(2016•河北模拟)如图,点A是x轴正半轴上......

    数形结合教学片断

    一、在理解算理过程中渗透数形结合思想。 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之......

    数形结合思想论文

    三新二移之基不可失 摘要:数学是一门应用性非常广泛的学科,伟大的数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之谜、日月之繁,无处不用数......

    中考冲刺:阅读理解型问题(基础)

      一、选择题1.(2016•江西模拟)已知二次函数y=x2﹣(m﹣1)x﹣m,其中m>0,它的图象与x轴从左到右交于R和Q两点,与y轴交于点P,点O是坐标原点.下列判断中不正确的是(  )A.方程x2﹣(m﹣1)x﹣m=0一定有两......