第一篇:小学数学教学中渗透数学思想方法的策略研究方案
小学数学教学中渗透数学思想方法的策略研究方案
玉海中心小学 丁美多
一、概念界定
数学思想:是对数学的知识内容和所使用方法的本质的认识,它是从某些具体数学认识过程中提炼出来的一些观念,在后继研究和实践中被反复证实其正确性之后,就带有了一般意义和相对稳定的特征,是对数学规律的理性认识,是对数学理论与内容的本质认识,它直接支配着数学的实践活动。
数学方法:是人们在数学研究、数学学习和数学问题解决等数学活动中的步骤、程序和格式,是达到数学研究和问题解决目的的途径和手段的总和,是数学思想的具体化反映。它具有过程性、层次性和可操作性等特点。
二者的关系:数学方法是数学的“行为规则”,数学思想是数学的“灵魂”。数学思想是数学方法的导向,数学方法是数学思想的表现形式和得以实现的手段。在小学数学教学实践中,两者之间并不作严格的区别,许多数学思想和方法往往是一致的,一般情况下可以将数学思想与方法看作一个整体,称作“数学思想方法”。
数学思想方法的渗透:渗透数学思想方法一方面需要教师挖掘、提炼隐含于教材中的数学思想方法;另一方面教师要把数学思想方法的教学纳入到教学目标,做到有目的、有计划、有步骤地精心设计好教学过程。
二、国内外关于同类课题研究的综述
从20世纪60年代起,荷兰就开始了将数学思想纳入数学教育的研究。1989年全美数学教师协会发表了《中小学数学课程与评估标准》,在这个文件中关于论述数学教育改革的目标第5条就明确提出:学会数学的思想方法。并将其作为“有数学素养”的标志。日本的《小学学习指导要领》指出“培养对日常事物现象的推测和合情合理的思考能力。同时,了解用数学方法来处理的优越性,进一步培养在生活中的自觉应用的态度。” 俄罗斯也把使学生形成数学思想方法列为数学教育的三大基本功任务之一。
在我国,随着“校本研究”在中小学的普及,参加人数和课题数量有了大幅度的增加。关于数学思想方法的渗透,也有丰富而深入的研究,这些研究取得了不少的成果,有的已形成了一定的理论。如朱成杰的《数学思想方法的研究与导论》,周全英、徐南昌的《数学思想方法选讲》;张德勤,发表10余篇关于数学教学中渗透数学思想方法的论文,宁波市海曙区教研室邬东山的《渗透数学思想方法提高学生思维素质》、深圳市向西小学余治军的《小学数学如何进行数学思想方法教学》等,但在我们学校对于这方面的研究还比较少,因此我们很有必要研究小学数学教学中渗透数学思想方法的策略,使有效的数学思想方法成为学生创造能力培养的桥梁、火种与催化剂,促进学生数学素养的形成和发展,使其成为具有数学思想的人。
三、课题研究的现实背景及意义
1、认知心理学指出:思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
2、数学哲学阐明:从数学哲学的角度讲,数学科学中最有生命力统摄力的是数学观和数学方法论,即数学思想方法;从数学教育哲学的角度讲,决定一生数学修养的高低,最为重要的标志是看他能否用数学的思想方法去解决数学问题以至日常生活问题。
3、《数学课程标准》提出:把“数学思考”作为总体目标之一,把“双基”扩展为“四基”,即基础知识、基本技能、基本数学思想、基本活动经验。由此可见,数学思想方法教学变得越来越重要。
4、教学实践表明:我们小学数学教学内容贯穿着两条主线,数学基础知识和数学思想方法。数学基础知识是一条明线,直接用文字的形式写在教材里,反映着知识间的纵向联系。数学思想方法则是一条暗线,反映着知识间的横向联系,隐藏在基础知识的背后,需要教师加以分析、提炼才能使之显露出来。数学知识是对生活的提炼,数学思想方法是对数学知识的提炼。美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此在小学数学的教学中要不失时机地对学生进行数学思想方法的渗透,掌握数学思想方法是数学学习的最高境界。小学阶段是学生学习知识的启蒙时期,在这一阶段有意识给学生渗透数学思想方法显得尤为重要。正如日本数学教育家米山国藏所说:“学生对作为知识的数学离开学校不到两年可能忘了,唯有深深铭记在头脑中的是数学的精神、数学的思想、研究方法等,这些随时随地发挥作用,使他们终身受益”。因此,本课题的研究具有重要的应用价值。
四、课题研究的目标和内容(一)、研究的预期目标
1、通过对小学各学段所要渗透的数学思想方法进行有机的整理与分析,形成可渗透数学思想方法的体系。
2、通过调查,剖析当前小学数学教学中渗透数学思想方法存在的问题和原因,为探索策略提供依据。
3、通过实践研究,探索形成一套行之有效、可操作性的渗透数学思想方法具体策略。
4、通过课堂教学实践,让学生在初步掌握数学思想方法的基础上,逐步学会用数学的思考方式去分析与解决问题,提高学生的数学素养。(二)、研究的主要内容
1、理论研究小学阶段学生数学思维的阶段性特征,对小学阶段存在的数学思想方法进行系统梳理。
2、当前小学数学教学中渗透数学思想方法的现状调查及其分析。
3、以实验班为基础,进行课堂教学尝试,以能够提供各个阶段教学实践中渗透数学思想方法的多个成功案例为主要内容,探索小学数学教学中渗透数学思想方法的策略。
五、课题研究的原则和方法(一)、研究的原则
1、实践性原则:要求课题研究中加强实践环节,使师生的个人认识真正建立在实践活动的基础上。通过活生生的实践活动,激发广大师生的参与积极性,并在参与中及时作出必要的调控,使研究保持动态平衡,充满生命活力。
2、发展性原则:小学生正处于一个迅速成长的年龄阶段,课题研究必须考虑到这一重要因素,在操作中应处理好可接受性与发展可能性的矛盾,需要考虑儿童当时的认知特点,又要兼顾超前发展的需要。
3、开放性原则:研究中要不断吸引国内外同类研究的新成果,使之充实到本课题研究中来。同时也要将本研究中出现的问题与成果及时地向有关专家与同行进行交流,是问题的可及时取得他们的指导,是成果的也可在他们论证的基础上进行推广,以扩大研究的社会效益。
4、激励性原则:注重学生的心理反应与心理体验,并在此基础上进行有效的激励。
5、民主化原则:研究中要为师生提供一个宽容的民主环境,给师生充分表达不同观点的自由,鼓励师生畅所欲言,各抒己见,在讨论中达到认识的统一。对那些由于认知风格不同而造成的分歧,组织者要鼓励他们的积极性,鼓励他们尽可能清楚地表征他们心理的过程,在此基础上求同存异,取得原则的一致。(二)、研究的方法
1、文献法:课题组认真学习教育理论书籍和有关文献资料,寻求更直接 的理论支撑并完善课题研究的理论依据,借鉴有关理论进行模式建构的初步的理论研究并进行模式假设和雏形模式建构,用理论指导实践,不断完善课题研究。
2、调查法:通过调查研究,了解小学数学课堂提问的现状。在自然状态下搜集研究第一手资料,并在此基础上分析、推理,确定实验中存在的问题,预测其发展变化以筹划将来的发展。
3、个案法:组织教师广泛收集教育实践中有效渗透数学思想方法的实际个案,通过对个案的筛选、归类、分析、研究,逐步总结出具有规律性的操作方式并加以推广应用,为实验研究提供操作依据和方法指导。
4、经验总结法:经验总结法:在案例收集并作归因分析的基础上,在学校中挑选能力较强的教师,以其所带班为试点班,开展研究,运用系统分析和整体思维方式进行经验总结。以后逐步展开,推广全校。
六、课题研究的步骤
本课题将进行为期1年的实验。
1、准备阶段——理论学习和资料收集阶段(2012年11月---2012年12月)
(1)召开课题组会议,学习讨论研究方案,明确研究思路,落实研究任务。
(2)查看搜索相关文献资料,把握研究现状与发展趋势。
(3)调查剖析当前小学教师的数学思想方法教学存在的问题和原因。
2、实施阶段——研究分析和自我实践阶段(2013年1月---2013年9月)
(1)通过现场看课、网上查找、杂志阅读等方式收集若干特级教师的课堂教学实录,初步整理出有效渗透数学思想方法的典型片段;通过听普通教师的课并进行现场录音(包括对自己的课堂教学进行录音)收集教学实录并初步整理出渗透数学思想方法的典型片段。制定出对渗透数学思想方法的策略。(2)根据阶段分析研究的结果,进行对比性实践,总结性实践。在实践中进行对比和反思,验证阶段性研究的成果。
3、结题阶段——课题总结和研究报告阶段(2013年10月---2013年11月)
回顾课题研究的全过程,根据实践检验的情况进一步深化研究所得出的结论,写一份有设计、有实施、有案例的关于渗透数学思想方法的策略研究报告,展示一堂运用研究结论所驾驭的课堂。
七、课题组织 组长:丁美多 成员:温荣莉
第二篇:小学数学教学中如何渗透数学思想方法
小学数学教学中如何渗透数学思想方法
摘要:数学思想是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果。《数学课程标准(2011版)》指出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。从“双基”扩展为“四基”,凸显数学思想在义务教育过程中的重要地位。笔者从实践层面谈在教学中如何渗透数学思想。
关键词:小学数学;渗透;数学思想方法
一、在教学预设时精心挖掘教材中的数学思想
课堂教学活动,它是复杂和多变的,受到多个因素的影响,所以精心的预设,是上好一节课的必要条件。课前,教师既要全面了解学生的学情,又要深入钻研教材,二次开发使用教材资源,挖掘教材中蕴含的数学思想,进行有效的教学预设。如:人教版义务教育课程三年级下册第八单元《解决问题》的例1《用连乘两步解决问题》的教学设计。例1出示主题图,图中突显一个大方阵。每行有8人,共10行。两旁又显示两个不完整的方阵,每个方阵只显示一列半。备课时,笔者关注到它不是3个完整的方阵,可这幅图到底是什么意思?在备课中苦苦挣扎,苦苦思索,如果只是将它理解为一个方阵来教,未必不可,可总感觉在文本解读上,缺失了一些深度。再一次读图,这个图在美术上叫二方延续,不能只看成一个方阵,也不能单纯地看成三个方阵,这里蕴含了类似于“极限思想”,(因为人数是有限的,但可以比三个方阵多得多)有很多方阵,可以让同学们发挥想象,是一个开放性的主题图,方阵的个数并不唯一。但为什么在图的结构安排上,中间这个方阵放大而且清晰地呈现,而旁边的方阵是不完整的。最后理解为教材设计的意图,是为了让同学们明白,只要先求出一个方阵的人数,其余无论有几个方阵,用一个方阵的人数去乘几个方阵,就可以很顺利地解决。于是,教师预设:同学们,看到这幅图,你想提什么问题?生答后。师又问,那么你能马上解决哪个问题?(可以知道哪一部分的人数?)用什么方法计算?接着问,为什么主题图中间的这个方阵既完整又清楚地显示,而且可以直接求出这个方阵的人数,而其它两个方阵只显示一列多的人数,这表示什么?通过问题的精心预设,学生在解决问题的过程中,思维深度得到了进一步的提升。教材中蕴含的类似于“极限思想”也在不知不觉地渗透给学生。
二、在授课中悄然渗透数学思想
数学思想方法其实就是蕴含在数学知识之中,尤其是蕴含于每一个数学知识的形成过程中。当学生在学习每一个数学新知时,教师要尽可能提炼出蕴含其中的数学思想方法。要让学生充分体验数学思想,要引导学生对解决问题的策略和依据进行不断的思考、猜想、论证,并通过合作交流,实践探究,优化方法,去感悟数学思想方法。例:《平行四边形的面积》一课,让学生围绕如何将平行四边形转化为已学过的图形这个问题独立思考、合作探究、猜想、论证。学生利用教师已经准备好的相关的平行四边形纸片材料,采取小组合作的方式进行探究活动。有的小组将它沿着平行四边形正中间的高剪下,转化为两个完全相等的梯形,再拼成一个长方形,从而根据长方形的公式推导出平行四边形的公式。也有的小组同学把它从一个角沿着高剪开,剪成一个三角形和一个梯形,再拼成一个长方形。还有的小组发现拼成的这个图形是一个正方形。最后根据已学过的正方形的面积公式推出平行四边形的面积公式。
三、在拓展运用中提炼数学思想
除新知学习外,我们还应把“提炼数学思想”的重要阵地放在练习课和复习课上。这就要求教师在练习课堂教学过程中一定要把握好时机,既不能蜻蜓点水,也不能为“渗”而“渗”,应该精心设计好每一个练习。要以促进学生的“悟”为目的,有效地预设思想、体验思想、内化思想和提升思想,最终促进学生自我学习能力的内化提升。二年级下册《观察、猜测、推理、验证》单元,新课结束后,笔者设计这样一道练习:小林、小英、小伟三位选手参加学校100米决赛。小林:我不是最慢的,小英说:我不是最快的。问题:你能判断比赛结果吗?
生:不能。因为小林不是最慢的,只能说明,他不是第三名,那可能是第一名或第二名;小英说不是最快的,那可能是第二名或第三名,这样重复了第二名。推不出来。
师:那要再增加一个什么条件,才能推出比赛结果。
生1:小伟比小林快。这样就可以推出第一名是小伟,第二名是小林,第三名是小英。
师:你们觉得,这位同学说得对吗?(生思考后,同意这位同学的观点。)
生2:还可以这样补充:小林比小伟快,小林第一名,小伟第二名,小英第三名。
生3:我不同意,因为小伟和小英并不清楚谁快。所以这个条件不行。
生4:小英比小伟快。说明小林第一名,小英第二名,小伟第三名。
生5:我同意。(全班没有不同意见。)
生6:那还可以说小林比小英快。结果小林第一名,小英第二名,小伟第三名。
生7:不行,小林第二名,小英第三名时,小林比小英快,小林第一名,小英第二名,小林也比小英快,这个条件不行。不知道和小伟的关系,不能推出比赛结果。
……
这样一道开放式的题型,学生的思维活跃了,充分地感受到数学推理思想在拓展练习中有着重要的作用。
总之,数学思想方法是数学知识的灵魂,是解决数学问题的指导思想和基本策略。数学教学过程中,应把数学思想方法的渗透做到润物细无声,而进行数学思想方法的渗透教学,应该是在启发学生进行思维的过程中通过一定的策略循序渐进地让学生获取。
第三篇:浅谈数学思想方法在小学数学教学中的渗透
浅谈数学思想方法在小学数学教学中的渗透
【摘 要】数学思想方法在当今社会的重要性日益显现,在小学数学教学中有意识地渗透一些基本的数学思想方法,能使学生感知数学的价值,学会用数学的眼光去思考和解决问题,还可以把学生数学知识的学习、数学能力的培养、个体智力的发展有机地结合起来,这也符合课程标准的思想。本文从充分挖掘教材的数学思想方法、把握教学时机适时渗透思想方法、加强数学思想方法训练、在学习反思中领悟数学思想方法四方面来阐述如何在课堂教学中渗透数学思想方法。
【关键词】数学思想方法 挖掘 渗透 训练 反思
当今社会,现代科学技术迅猛发展、国民素质教育全面深入实施、课程改革初见成效,对科学思想和方法有着重要影响的数学思想方法的重要性也日益显现,得到人们的重视。学生学习数学的目的已经不仅仅是单纯的对数学知识的理解、掌握和数学技能的形成、应用,而是更为重要的数学素养的培养和继续学习能力的获得,并且能够运用数学思想方法去发现、分析、解决生活中遇到的各种数学问题。小学数学教学中包含着许多基本的数学思想方法,如对应、分类、类比、转化、化归、假设、符号化、数形结合等。在小学数学教学中有意识地渗透一些基本的数学思想方法,不仅能使学生感悟数学的美丽,感知数学的价值,学会数学地思考和解决问题,还可以把学生知识的学习、能力的培养、智力的发展有机地结合起来,这也符合课程标准的思想。那么如何在教学中渗透一些基本的数学思想方法呢?结合本文谈谈自己的一些看法。
一、更新教育理念,充分挖掘教材中涉及的数学思想方法
数学思想方法隐含于数学学习活动的每一个环节,教师作为引导者和组织者,首先要更新自己的教育理念,要具备数学思想方法的基本知识和理论,要有渗透数学思想方法的主观意识和自觉性,充分挖掘教材和问题解决中所蕴含的数学思想方法,有目的、有计划、有层次的、循序渐进地渗透。例如函数思想,小学数学中低段,就通过填数图等形式,将函数思想渗透在许多例题和习题之中; 在中高段教材中出现的几何图形的面积公式和体积公式,实际上就是变量之间的函数关系的解析法表示;又如:教材中在认数、数的计算、最大公约数和最小公倍数等教学都渗透了集合的思想;在平行四边形、三角形、梯形、圆形等图形的面积计算公式的推导中,也都运用了转化的思想,即把一个未知的图形,通过割、补、剪、拼等方法,转化成一个已知的图形来求面积;在圆面积公式推导的过程中渗透极限思想。
总之,在小学数学教材中,能够渗透数学思想方法的内容是非常广泛的,它分布于每册教材中,教师在备课时要充分挖掘教材中所蕴含的数学思想方法,仔细分析学生的思维和研究学生的心理特点,在教学目标中加以明确,在教学过程中充分地加以渗透,保证课堂教学的可操作性,提高课堂教学的活力。
二、把握教学时机,适时渗透数学思想方法
数学思想方法的渗透,教师要注意把握时机,适时渗透,这样才能既发展学生的数学思维,又不加重学生的学习负担。比如在知识的形成、实践操作过程、解决问题等展现思维的过程中,都有捕捉到渗透数学思想方法的良好时机。
(一)在知识形成发展过程中渗透
教学中,在阐述知识形成和发展的同时应凸现数学思想方法。如在一年级数学教材“比一比”这节课中,书中给出一幅小兔搬砖和小猪搬木料的劳动场面,并给出两幅一一配对图,一幅小兔分别对四块砖的图形,以此建立“同样多”的概念,另一幅是小猪和木料配对图,说明木料多,小猪少,建立“多”与“少”的概念,渗透对应思想;又如教学求圆面积时,学生发现用数方格的方法求圆面积有困难,思路受阻,教师及时点拨能否把圆剪拼割补成我们已学图形?经过一番探索,学生有的拼成近似长方形,有的拼成近似三角形、近似梯形等,然后让学生闭上眼睛想,如果分的份数越来越多,这条线将怎么样?这个图形将怎么样?再多呢?再多呢?……无限多呢?这样的教学使学生对极限思想、化归思想领悟较深。
(二)在实践操作中渗透
实践操作是学生参与数学实践活动的重要手段。实践操作获得的数学思想方法更形象深刻,更能实现迁移,有利于提高学习能力。如教学“三角形”时,让学生在教师提供的4根小棒(4cm、5cm、6cm、10cm)中任选三根摆三角形,学生通过操作发现,能摆成三角形的是:5cm、6cm、10cm和4cm、5cm、6cm,不能摆成三角形的是:4cm、5cm、10cm和4cm、6cm、10cm。让学生通过观察、猜测、验证,从而归纳出“三角形任意两边之和大于第三边”的结论。这样的教学活动让学生经历了“观察―――操作―――猜想―――验证”过程,渗透了归纳的数学思想,为学生的后继学习奠定了坚实的基础。
三、在学习反思中领悟数学思想方法
数学思想方法的获得,一来需要教师在平时的教学活动中加以渗透,二来则学生自己在平时的学习活动中多多反思和领悟,而且反思和领悟是至关重要的,也是别人所无法替代的。因此,教学中教师要引导学生自觉地检查自身的思维活动,反思自己是如何发现和解决问题的,应用了哪些基本的思想方法、技能和技巧,如在教学“乘法交换律”时,教师可以让学生回忆“加法交换律”的学习方法,运用已经掌握的学习方法去继续发现和验证“乘法交换律”。在学习小数除法时让学生回忆小数乘法的转化方法,然后自己尝试用相应的转化方法来解决除数是小数的除法计算问题。只有在不断的反思和运用过程中,学生对数学思想方法的认识才能有所提高,学习能力才能得到不断发展。
总而言之,在小学数学教学中,以数学知识和技能的传授作为载体,有意地、逐步地进行一些基本的数学思想方法渗透,必将对数学教育和数学研究产生十分重要的作用,而这也是未来社会的发展和数学教研发展的必然要求。
【参考文献】
[1]陈明荣.小学数学思想方法渗透的实践与思考[J].教学月刊.[2]叶桂萍.数学思想方法在小学数学教学中的渗透[J].小学数学参考.[3]张厚琴.小学数学思想方法教育[J].教学理论.[4]孙敏.数学思想方法在小学数学教学中的渗透例谈[J].小学教学参考.
第四篇:小学数学教学中转化、归纳思想方法的渗透
小学数学教学中转化、归纳思想方法的渗透
《全日制义务教育数学课程标准》在总体要求和表述数学课程的内容时均提到了数学思想方法,《标准》明确要求,“要使学生获得社会生活和进一步发展所必须的数学基础知识、基本技能、基本思想和基本活动经验。数学课程不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。”这就要求我们要把使学生掌握一定的数学思想方法,作为数学教学的重要目标之一,在小学数学教学中就是要结合教学内容适时适当地渗透思想方法,培养学生自觉地运用数学思想方法解决问题的意识。小学数学教学需要渗透的思想方法很多,本文仅对转化和归纳思想方法,就“能结合哪些教学内容进行渗透,在教学时应注意哪些问题”,谈一下自己粗浅的认识,望得到同行的指教。
一、渗透转化思想,培养学生利用“旧知”解决“新知”的意识和能力
转化思想就是利用已有的知识和经验,将复杂的转化为简单的,将未知的转化为已知的,将看来不能解答的转化成能解答的,简单地说就是将“新知”转化为“旧知”,利用“旧知”解决“新知”。
(一)把曲线型图形转化为直线型以及直线型图形之间的相互转化。
小学数学有关图形的学习,是先学习直线型图形,如长方形、三角形、平行四边形、长方体等,再学习曲线型图形,如圆、圆柱等,在学习曲线型图形有关知识时,就可利用转化方法,将曲线型图形转化为直线型的图形,利用直线型的相关知识和经验解决。如:圆面积公式的教学(图1),先引导学生将圆这一曲线型图形转化成长方形这一直线型图形,然后观察、研究圆各个元素和长方形各个元素之间的关系,根据圆的半周长相当于长方形的长,圆的半径相当于长方形的宽的关系,由长方形的面积等于长乘宽,得到圆的面积等于半径乘半径乘圆周率,从而由长方形面积公式这一“旧知”解决了圆面积公式这一“新知”。又如,圆柱的体积公式可以通过把圆柱转化成长方体来获取。
长方形面积:长×宽长方形面积:长×宽
圆的面积:πr×r=πr2平行四边形面积:底×高
(图1)(图2)
直线型图形之间也可以通过转化来学习,如在教学平行四边形面积公式时,可先引导学生把平行四边形设法转化成长方形,然后研究两者元素之间的关系,通过平行四边形的底相当于长方形的长,平行四边形的高相当于长方形宽的关系,由长方形面积等于长乘宽,得到平行四边形面积等于底乘高,从而由长方形面积这一“旧知”解决了平行四边形面积这一“新知”的问题。(图2)又如三角形的面积公式,可以将其转化成平行四边形来获取,梯形的面积公式可以将其转化成平行四边形、三角形等学过的图形获得,等等。
在小学数学“空间与图形”领域所有的“求积”知识的教学几乎都可以用转化思想来学习。
(二)通过转化将运算分解,用简单的运算完成较复杂的运算。
较复杂运算往往都是由几个简单的运算叠加而成的,利用转化方法就可以实现复杂运算的分解,通过解决“旧知”—-学过的简单的运算,解决“新知”—-较复杂的运算。如:教学23+31(两位数加两位数口算)时,由于学生已经学习了两位数加减一位数和整十数的口算,教学时就可引导学生将31分解为30和1,将23+31转化为23+30=53(两位数加整十数)和53+1=54(两位数加一位数)两个简单的运算,或将23分解为20和3,将其转化为20+31=51和3+51=54,从而解决23+31=54的问题。
即:23+31转化为23+30=5353+1=54所以23+31=54
或23+31转化为20+31=513+51=54所以23+31=54
又如:教学1.2×2.8时,由于学生已经学习了整数乘法以及积得变化规律,所以教学时,可引导学生将1.2×2.8转化为整数乘法:
12×28,然后由12×28的积,根据积得变化规律推出1.2×2.8的积。
在小学数学“数与代数”领域的很多运算(尤其是口算)都可以通过转化将其分解成几个简单运算解决。
(三)实现相关知识的合二为一。有很多数学知识都是相互联系的,在本质上是一致的,在一定的条件下可以合二为一,运用转化就可达到此目的。如:解比例问题通过比例的基本性质就可以实现解比例和解方程的合二为一:如教学
x:320=1:10,就可以利用比例的基本性质将其转化为方程10x=320×1,解比例的问题就变成解方程的问题了。又如,“求一个数的几倍是多少”的问题,本质上就是“求几个几是多少”,所以在教学“求一个数的几倍是多少”时,在学生透彻理解“倍”的概念后,就可引导学生将“求一个数的几倍的问题”转化成“求几个几是多少”的问题,用表内乘法来解决。又如“求一个数是另一个数的几倍”的问题可以通过转化为“求一个数里有几个几”的问题来解决;把分数除法通过“倒数”转化成为分数乘法,实现分数乘、除法的合二为一。等等。
(四)教学时应注意的问题。
1、转化的“目的性”和“等价性”。在引导学生运用转化思想进行学习时,一要引导学生思考是由“谁”向“谁”转化,为什么要实施这样的转化;二要保证转化前后的“等价”。如在利用转化思想学习习近平行四边形的面积时,要使学生明确为什么要转化成长方形?为什么不转化成三角形等其他图形?转化成的长方
形面积和原平行四边形面积是否等价?又如学习除数是小数的除法时,要引导学生思考:为什么要把除数转化成整数?除数化成整数后被除数应作什么变化?为什么?变化的根据是什么?变化后的商和原来要求的除法的商“等价”?为什么?
2、备课时要瞻前顾后,教学时要步步为营。数学的系统性决定了数学知识间是相互联系的,利用转化思想进行学习时,用到的“旧知”有些和“新知”不是一个单元的,甚至不是一个年级的,这就要求我们在备课时不仅要考虑把每一个知识点都要教学到位,还要考虑所学的知识和原来的哪些知识有联系,还要考虑所学的知识对以后所学的哪些知识产生影响。
3、要及时引导学生沟通知识间的联系,帮助学生形成良好的认知结构。学生解决新问题时,要从自己的认知结构中去“检索”与新问题有关的已有知识和经验,良好的认知结构便于学生去“检索”,否则既是认知结构中有相关的知识和经验,也难以“检索”到。利用转化思想学习,是沟通新旧知识联系、形成良好认知结构的有效途径,教学时要有意识地引导学生及时沟通知识间的联系,从本质上掌握相关知识,不断地丰富和调整自己的认知结构。
4、重视培养转化意识。小学数学中的很多的问题都可以通过利用转化思想来解决,通过一系列相关知识的学习,要使学生认识到转化是解决问题的重要途径之一,面对新的问题,首先要考虑看能否转化成原来学过的,能否用原来的知识和经验来解决,培养学生善于和习惯利用转化思想解决问题的意识。
二、渗透归纳思想,培养学生的概括、归纳能力
归纳指给学生提供某类事物的部分对象,引导学生对部分对象进行观察分析,归纳总结出它们具有的某些共同特征,通过部分对象的特征推出这类事物的全部对象都具备这种特征,从而得某个结论的过程。这种从特殊到一般的思维方式叫归纳思想。
(一)性质的教学。小学数学中许多性质的教学均可以利用归纳的思想来学习。如:教学分数的基本性质时,可以创设情境,让学生对三块同样长的长方形纸条,平均分成8份,取其中的4份;平均分成4份,取其中的2份;平均分成2份,取其中的1份,然后分别用分数表示取的份数,通过借助纸条直观比较这些分数的大小,得到 = = ,通过分析比较和、和、和各组分数的分子、分母的变化情况,发现这三个分数,具有分子、分母都同时乘或除以同一个不为0的数,分数的大小不变的性质,于是推出:所有的分数都具备这一性质,得到分数的基本性质。又如小数的性质、比例的性质、等式的性质等均可以归纳的方法来学习。
(二)运算律教学。如学习加法的交换律时,可提供一组算式让学生计算并填空:
34+2○2+34347+121○121+347
39+67○67+39234+45○45+234
引导学生观察这4组算式的特点,发现了“交换两个加数的位置,它们的和不变”的运算规律。于是推出:所有的加法运算,都有这样的规律,从而得到加法的运算律。又如:乘法的交换律、乘法分配律、加法结合律等等,都可以仿照加法交换律的教学方法,引导学生利用归纳思想来获取。
(三)数量关系教学。如在学习“速度、路程和时间”这一数量关系时,可创设情境,让学生经历解决三、四个关于速度、路程、时间的实际问题的过程,感受和归纳速度、路程和时间的关系:路程=速度×时间,从而推出,所有相关问题都存在这种关系。
同样,其它的数量关系的教学也可仿此进行教学。
在其它知识的教学时,也常常用到归纳的思想,如在教学分数和除法的关系时,可通过学生的操作、探究,让学生发现三组或三组以上除法和分数的关系,如:1÷3= , 3÷4=,7÷10=,发现它们具备:被除数÷除数=,于是推出,所有的分数和除法都具有这种关系。又如,教学2的倍数的特征,可以引导学生观察几个2的倍数,看看有什么共同的特征,从而推出2的倍数均具有这种特征。等等。
(四)教学时应注意的问题。
1、提供的部分对象要“真”且尽可能的多。
小学数学教学中用到的归纳方法,是不完全归纳法,是根据这类事物的部分对象具有的性质来推断这类事物都具备这种性质,在教学时,一要保证这部分结论必须是正确的,这是归纳的前提,前提不正确,归纳就失去了意义。二要给学生提供的这部分对象要尽可能的多,至少三个,切忌通过一、二个特例,让学生发现、归纳“规律”,得出结论。
2、重视培养学生用数学文字语言、数学符号语言表述事实的能力。
语言是思维的外壳,在学生归纳表述结论或规律时,要在学生“个性化”表述的基础上,学会“数学地”表述,学会用数学文字语言表述,为培养学生数学思维能力奠定基础,如在表述=分子、分母的变化规律时,要引导学生这样表述:的分子、分母同时乘2得到,与的大小不变;的分子、分母同时除以2,得到,与的大小不变。
数学是“符号+逻辑”,恰当地利用数学符号语言能够简洁、清晰地描述事实,且便于记忆,在利用归纳思想方法教学时,要有意识地引导学生经历“数学化”的过程,逐步学会用符号语言归纳概括结论,体会数学表示的简洁性,培养符号感。如:在上面所举用归纳方法学习加法交流律时,要让学生学会用数学符号语言(字母)表示加法交流律,感受用“a+b=b+a”表示的简洁性。
3、重视培养学生从数学的角度观察世界的意识和能力。
学生观察事物时,往往会从不同的角度去观察,用转化思想学习时,要引导学生用数学的眼光去观察事物,从数学的角度去思考问题,给学生长上一双“数学的眼睛”,只有这样,才能逐步提升学生的数学素养。
第五篇:关于小学数学教学中渗透数学思想方法的思考
关于小学数学教学中渗透数学思想方法的思考
三明市列东小学 王家琦
一、数学教学中渗透数学思想方法的必要性
数学思想方法是指数学思想和数学方法两个方面。数学思想是数学活动的基本观点,而数学方法则是在数学思想指导下,为数学活动提供思路和逻辑手段以及具体操作原则的方法。所以说,数学思想方法以数学知识为载体,是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识。
数学思想方法和数学知识相比,知识的有效性是短暂的,思想方法的有效性却是长期的,能够使人“受益终生”。布鲁纳指出,掌握基本数学思想和方法能使数学更易于理解和记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。事实上,数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯,为将来从事科学研究和参加社会实践打下良好基础。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口,是未来社会的要求和 国际数学教育发展的必然结果。
二、小学数学教学中应渗透哪些数学思想方法
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1、化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 米,黄鼠狼每次
233可向前跳2 米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 48米设有一个陷阱,当它们之中有一个掉进陷阱时,另 一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱
13时,它所跳过的距离即是它每次所跳距离4(或2)米的整倍数,又是陷
243133阱间隔12 米的整倍数,也就是4 和12 的“ 最小公倍数”(或2 和8284312 的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉
8入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2、数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。
例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
11111此题若把五次所喝的牛奶加起来,即++++就为所求,但这
2481632不是最好的解题策 略。我们先画一个正方形,并假设它的面积为单位“1”,由1图可知,1-就为所求,这里不但向学生渗透了数形结合思想,还向学生渗32透了类比的思想。(如上图)
3、极限思想
可以这样理解,如果一个无穷数列,当它的项数无限增大或减小时,这个数列中的项无限趋近了某一个常数,这个常数就是这一无穷数列的极限。如在《庄子·天下篇》中,有“一尺之棰,日取一半,万世不竭”的说法。用通俗的话讲,就是有一根一尺长的棒,第一天取棒的一半,第二天取剩下的一半的一半,这样取下去,这一根棒是永远取不尽的。我们小学数学中,也存在着许多极限思想。如最大的自然数,最小的小数等。谈及这些,主要是达到将极限思想扩展到生活以及生活中的学习和认识的目的,这才真正达到极限思想的实质。
4、统计思想
统计思想要求学生养成一定的搜集、整理的意识和进行简单发现、推论的能力。反映在日常数学教学中,即加大调查课、实践课的力度,培养学生良好的自学习惯和合作意识,使学生在搜集、整理和归类、推理中形成良好的统计意识。
此外,还有符号思想、对应思想、集合思想、函数思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学教学应如何进行数学思想方法的渗透
从教材的构成体系来看,整个小学数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。数学思想是教材体系的灵魂,是我们进行教学设计和教材重组的指导思想。所以,小学数学教学中进行数学思想方法的渗透,具体表现在教师在更新观念,从思想上不断提高对渗透数学思想方法重要性的认识的基础上,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节;同时,要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。比如,函数思想中的“变与不变”在小学低中高年级渗透的程度因学生的年龄特征和接受水平各异。低年级只要求学生能够联系生活,认识到相关联的三个量,其中一种量不变,另外两种量发生相反或相同的增减变化即可;中年级则在低年级已知的基础上,进一步认识一种量不变,另外两种量发生成倍相反或相同的变化,但不一定要求对这不同类型的“变与不变”进行深度辨析;高年级则要求学生进入深度辨析阶段,从比例关系上区分“变与不变”的差异。也就是说,数学思想的渗透是随着学生已有知识经验的积累、能力的提高逐步加深的。
四、小学数学教学中加强数学思想方法的渗透应注意些什么
1、把握渗透的规律性,为学生营造广阔的探索空间。
数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等;要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学、知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。一般在小学阶段,采取小组合作的形式,利用学生熟悉的生活挖掘素材,加之多媒体的教学手段,使学生在动手操作、讨论、发现中形成一定的数学思想,符合规律探索的一般过程,比较合理。
2、注重渗透的反复性,为学生提供楼梯式实践的舞台。
数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生发现、归纳解答这类应用题的关键,找到具体数量的对应分率,从而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透,不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练,才能使学生真正地有所领悟。
3、认清渗透的可行性和“渗透”性,使之真正成为学生学习方法积累的摇篮。
数学思想相对于教材而言,是其隐性工程;对于学生,则是通俗而又抽象的领域。与其生活阅历相当的数学思想的渗透通俗易懂,超乎其生活经验和理解力许多的数学思想则高不可攀,没有渗透的必要和条件。所以,在小学数学教学中,要注意渗透的可行性。
我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。但小学数学教学对于数学思想的教学没有专门提出如此之高的要求。所以,我们还要注意小学数学的数学思想是“渗透”,而不能等同于一般教材的处理。