核磁共振氢谱小结

时间:2019-05-12 16:51:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《核磁共振氢谱小结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《核磁共振氢谱小结》。

第一篇:核磁共振氢谱小结

目录

核磁共振氢谱...................................................................................................................2 1氢的化学位移................................................................................................................2 1.1化学位移...................................................................................................................2 1.2屏蔽效应...................................................................................................................2 1.3影响化学位移的因素..................................................................................................3 1.3.1诱导效应.........................................................................................................3 1.3.2共轭效应.........................................................................................................4 1.3.3各向异性效应..................................................................................................5 1.3.4Van der Waals效应.........................................................................................5 1.3.5氢键与溶剂效应..............................................................................................5 2自旋偶合和自旋裂分.....................................................................................................6 2.1 n + 1规律............................................................................................................6 2.2 偶合常数.................................................................................................................7 2.2.3远程偶合.........................................................................................................7 2.2.4质子与其他核的偶合.......................................................................................8 3自旋系统.......................................................................................................................8 3.1化学等价...................................................................................................................8 3.2磁等价.......................................................................................................................9 3.4自旋系统的命名.......................................................................................................10 3.5自旋系统的分类.......................................................................................................10 3.5.1二旋系统.......................................................................................................11 3.5.2三旋系统.......................................................................................................11 3.5.3四旋系统.......................................................................................................14 4简化1H-NMR谱的实验方法...........................................................................................16 5图谱的分类.................................................................................................................17 6常用化学位移标准物...................................................................................................18 7应用............................................................................................................................19

核磁共振氢谱

1氢的化学位移

原子核由于所处的化学环境不同,而在不同的共振磁场下显示吸收峰的现象。

1.1化学位移的表示:单位ppm

标准:四甲基硅(TMS),δ=0,(如以τ表示,τ=10,τ=10+δ)

低场(高频)←→高场(低频)1.2屏蔽效应(化学位移的根源)

磁场中所有自旋核产生感应磁场,方向与外加磁场相反或相同,使原子核的实受磁场降低或升高,即屏蔽效应。

屏蔽常数和化学位移

1.3影响化学位移的因素

诱导效应 共轭效应 各向异性效应 Van der Waals效应 氢键效应和溶剂效应 1.3.1诱导效应

氢原子核外成键电子的电子云密度产生的屏蔽效应。

拉电子基团:去屏蔽效应,化学位移左移,即增大 推电子基团:屏蔽效应,化学位移右移,即减小 由于邻对位氧原子的存在,右图中双氢黄酮的芳环氢ab的化学位移为6.15ppm通常芳环氢化学位移大于7ppm。

1.3.2共轭效应 1.3.3各向异性效应

芳环 叁键 羰基 双键 单键

在分子中处于某一化学键的不同空间位臵上的核受到不同的屏蔽作用,这种现象称为各向异性效应,这是因为由电子构成的化学键在外磁场的作用下,产生一个各向异性的附加磁场,使得某些位和键碳原子相连的H,其所受屏蔽作用小于烷基碳原子相连的H原子。1.3.4Van der Waals效应

当两个质子在空间结构上非常靠近时,具有负电荷的电子云就会互相排斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降,共振信号向低磁场位移,这种效应称为Van der Waals效应。

δ(ppm)

(Ⅰ)

(Ⅱ)Ha

4.68

3.92 Hb

2.40

3.55 Hc

1.10

0.88 1.3.5氢键与溶剂效应

氢键与化学位移:绝大多数氢键形成后,质子化学位移移向低场。表现出相当大的去屏蔽效应.提高温度和降低浓度都可以破坏氢键.分子内氢键,其化学位移变化与溶液浓度无关,取决于分子本身结构。分子间氢键受环境影响较大,当样品浓度、温度发生变化时,氢键质子的化学位移会发生变化。

乙醇的羟基随浓度增加,分子间氢键增强,化学位移增大 溶剂效应:溶剂不同使化学位移改变的效应

溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不同溶剂极性不同,与溶质形成氢键的强弱不同引起的.2自旋偶合和自旋裂分

自旋-自旋偶合与自旋-自旋裂分 2.1 n + 1规律

n +1规律:当某组质子有n个相邻的质子时,这组质子的吸收峰将裂分成n +1重峰。

n数二项式展开式系数峰形 0

单峰 1 1 1 二重峰 1

三重峰

四重峰

五重峰 5

六重峰

严格来说, n+1规律应该是2nI+1规律,对氢原子核(H1)来说,因它的I=1/2, 所以就变成了规律.n + 1规律只适合于互相偶合的质子的化学位移差远大于偶合常数,即△v>>J时的一级光谱。而且在实际谱图中互相偶合的二组峰强度还会出现内侧高,外侧低的情况,称为向心规则。利用向心规则,可以找到吸收峰间互相偶合的关系。2.2 偶合常数

自旋核的核磁矩可以通过成键电子影响邻近磁核是引起自旋-自旋偶合的根本原因。磁性核在磁场中有不同的取向,产生不同的局部磁场,从而加强或减弱外磁场的作用,使其周围的磁核感受到两种或数种不同强度的磁场的作用,故在两个或数个不同的位臵上产生共振吸收峰。这种由于自旋-自旋偶合引起谱峰裂分的现象称为自旋-自旋裂分(Spin-Spin Splitting)。

2.2.1同碳质子的偶合常数(2J,J同)

以2J或J同表示,2J一般为负值,但变化范围较大 影响2J的因素主要有:

取代基电负性会使2J的绝对值减少,即向正的方向变化。

对于脂环化合物,环上同碳质子的2J值会随键角的增加而减小,即向负的方向变化。烯类化合物末端双键质子的2J一般在+3~-3Hz 之间,邻位电负性取代基会使2J向负的方向变化.2.2.2邻碳质子的偶合常数(3J, J邻) 饱和型邻位偶合常数;

在饱和化合物中,通过三个单键(H-C-C-H)的偶合叫饱和型邻位偶合。开链脂肪族化合物由于σ键自由旋转的平均化,使3J数值约为7Hz。3J的大小与双面夹角、取代基电负性、环系因素有关。 烯型邻位偶合常数

烯氢的邻位偶合是通过二个单键和一个双键(H-C=C-H)发生作用的。由于双键的存在,反式结构的双面夹角为180o,顺式结构的双面夹角为0o,因此J反大于J顺.芳氢的偶合常数

芳环氢的偶合可分为邻、间、对位三种偶合,偶合常数都为正值,邻位偶合常数比较大,一般为6.0~9.4 Hz(三键),间位为0.8~3.1Hz(四键),对位小于0.59Hz(五键)。

一般情况下,对位偶合不易表现出来。苯环氢被取代后,特别是强拉电子或强推电子基团的取代,使苯环电子云分布发生变化,表现出J邻、J间和J对的偶合,使苯环质子吸收峰变成复杂的多重峰。2.2.3远程偶合

超过三个键的偶合称为远程偶合(long-range coupling),如芳烃 的间位偶合和对位偶合都属于远程偶合。远程偶合的偶合常数都比较小,一般在0~3Hz之间。常见的远程偶合有下列几种情况: 丙烯型偶合 高丙烯偶合 炔及迭烯 折线性偶合 W型偶合

2.2.4质子与其他核的偶合

质子与其它磁性核如13C、19F、31P的偶合 3自旋系统

把几个互相偶合的核,按偶合作用的强弱,分成不同的自旋系统,系统内部的核互相偶合,但不和系统外的任何核相互作用。系统与系统之间是隔离的.3.1化学等价

3.2磁等价

分子中若有一组核,它们对组外任何一个核都表现出相同大小的偶合作用,即只表现出一种偶合常数,则这组核称为彼此磁等价的核。例如:CH2F2中二个氢和二个氟任何一个偶合都是相同的,所以二个氢是磁等价的核,二个氟也是磁等价的核。

磁全同:既化学等价又磁等价的原子核,称为磁全同磁全同核。磁不等价的情况

 单键带有双键性时会产生不等价质子,R-CO-N(CH2CH3)2,2个CH2 会出现2组四重峰,2个CH3会出现复杂的多重峰(2组三重峰的重叠) 双键同碳质子具有不等价性

H2C=CHR  单键不能自由旋转时,也会产生不等价质子,BrCH2CH(CH3)2 有三种构象,室温下C-C快速旋转,CH2上2个质子是等价的,但在低温下C-C不能快速旋转,CH2上2个质子所处的环境有差别而成为不等价质子。 与不对称碳相连的CH2, 2个质子是不等价的  固定在环上的CH2, 2个质子是不等价,甾体环  苯环上化学环境相同的质子可能磁不等价 3.4自旋系统的命名

分子中两组相互干扰的核,它们之间的化学位移差Δγ小于或近似于偶合常数J时,则这些化学位移近似的核分别以A、B、C…字母表示。若其中某种类的磁全同的核有几个,则在核字母的右下方用阿拉伯字母写上标记,如Cl-CH2-CH2-COOH中间二个CH2构成A2B2系统。

分子中两组互相干扰的核,它们的化学位移差Δ远大于它们之间的偶合常数(Δγ>>J),则其中一组用A、B、C…表示,另一组用x、y、z…表示。

若核组内的核为磁不等价时,则用A、A′、B、B′加以区别。

3.5自旋系统的分类

自旋系统:相互偶合的核构成一自旋系统,不与系统外的核偶合。

一个分子可由一个或一个以上的自旋系统组成。

C6H5CH2CH2OCOCH=CH2 由三个自旋系统组成 二旋系统

AX, AB系统

三旋系统

AX2, AB2, AMX, ABX, ABC系统 四旋系统

AX3, A2X2, A2B2, AAˊBBˊ系统 五旋系统

CH3-CH2-X , 一取代苯等。A与X,A与M与X

化学不等价,磁不等价,Δv/J 值较大。A与B,A与B与C

化学不等价,磁不等价,Δv/J 值较小。A与A 化学等价,磁不等价。

A2或X2 表示各自为两个磁全同的核。

3.5.1二旋系统

AX, AB, A2(>C=CH2,X-CH=CH-Y,C*-CH2-等)

3.5.2三旋系统

A3 AX2 AB2

AMX ABX ABC系统

(X-CH=CH2 ,-CH2-CH< ,三取代苯,二取代吡啶等) A3 系统:A3(s 3H),CH3O-, CH3CO-, CH3-Ar… 磁全同核,不发生分裂,单峰。

 AX2 系统: A(t 1H)X2(d 2H)按一级谱图处理  AB2 系统(常见的AB2系统如下)(注意:虽结构不对称,但值相近)

 AB2系统比较复杂,最多时出现9条峰,其中A:4条峰, 1H; B:条峰,2H;1条综合峰。

随着ΔvAB/J 值的降低,二者化学位移接近,综合峰强度增大。 AMX 系统

AMX系统,12条峰.A(dd, 1H, JAM, JAX)M(dd, 1H, JAM, JMX)X(dd, 1H, JAX, JMX)在A,M,X各4条谱线中,[1-2]=[3-4]等于一种偶合常数,[1-3]=[2-4]等于另一种偶合常数,化学位移值约等于4条谱线的中心。

 ABX 系统 常见的二级谱

ABX系统最多出现14条峰,AB: 8条峰,X:4条峰,两条综合峰(强度较弱,难观察到)。

AB部分的8条峰相互交错,不易归属,裂距不等于偶合常数。

ΔvAB/ J 值不是太小时,可近似作为一级谱处理。AB四重峰进一步被X裂分为8条峰。

根据峰形的相对强度和4个相等的裂距,找出两个AB四重峰,如 1,3,5,7和2,4,6,8峰。JAB ≈ [1-3]=[5-7]=[2-4]=[6-8] JAX ≈ [1-2]=[3-4] JBX ≈ [5-6]=[7-8] 若ΔvAB/ J 值太小,需进行较复杂的计算。 ABC系统

ABC系统更加复杂,最多出现15条峰,峰的相对强度差别大,且相互交错,难以解析

提高仪器的磁场强度,ΔvAB /J 值增大,使二级谱转化为一级谱

ABC → ABX →AMX 随着ΔvAB/J 值的降低,AMX→ABX → ABC 例如:60兆赫兹的谱图中属于ABC系统,但

220兆赫兹的谱图可用AMX系统处理

3.5.3四旋系统

AX3, A2X2, A2B2, AA′BB′系统 AX3

A2X2一级谱

A2B2, AA′BB′二级谱

例如:CH3CHO, CH3CHX-,-OCH2CH2CO-等一级谱处理。 A2B2系统

A2B2系统理论上18条峰,常见14条峰,A、B各自为 7条峰,峰形对称。vA= v5,v B = v5ˊ,JAB =(½)*[1-6], 峰形对称

例如:β-氯乙醇

 AAˊBBˊ系统: 理论上出现28条峰,AA′,BB′各自14条峰。峰形对称

邻二氯苯的谱图如下:

4简化1H-NMR谱的实验方法  使用高磁场的仪器  活泼氢反应  位移试剂

例如:60兆赫兹的谱图中属于ABC系统,但

220兆赫兹的谱图可用AMX系统处理。

重氢交换法

D2O 交换:

-OH,-NH2,-COOH,-SH… NaOD交换:

可以与羰基α-位氢交换

5图谱的分类 一级谱图

相互偶合核的化学位移差值△v>>J(6J)裂分峰数目符合(n+1)或(2nI+1)规律。裂分峰强度符合二项展开式的系数。裂距等于偶合常数。二级谱图

相互偶合核的化学位移差值△v<6J 裂分峰数目不符合(n+1)规则。

裂分峰强度不再是(a十b)n展开项的系数。裂分峰的间隔并不相等,化学位移δ值与偶合常数J 往往不能从图上直接得到,需通过计算求得。

6常用化学位移标准物

氢谱:非水溶剂四甲基硅烷(TMS)

水溶液为2,2-二甲基戊硅烷-5-磺酸钠(DSS)碳谱:四甲基硅烷(TMS)或者氘代试剂中的碳峰 硼谱:乙醚三氟化硼或者三甲氧基硼 磷谱:85%磷酸(但只能作为外标)锂谱:4M高氯酸锂溶液 钠谱:1M氯化钠溶液

硅谱:四甲基硅烷,但在低频区则用四乙基正硅酸酯

记住:无论内标还是外标,实际化学位移值随温度变化而变化,而标准物本身就受温度的影响。如温度每改变30K,TMS质子共振信号将变化0.1 ppm。因此,如果做变温试验,最好标明详细的实验过程。

样品要求

尽可能使用氘代试剂

对于氢谱,3到10毫克样品足够。对于分子量较大的样品,有时需要浓度更大的溶液。但浓度太大会因饱和或者粘度增加而降低分辨率。对于碳谱和杂核,样品浓度至少为氢谱的5倍(一般在100毫克左右)。对于二维实验,为了获得较好的信噪比,样品浓度必须够。根据经验,25毫克样品足以完成所有实验,包括氢碳相关HMBC实验。如果样品只有1到5毫克,只能完成均核氢氢相关实验,是与碳相关的实验至少需要过夜。

保持样品高度或者体积一致。这将减少换样品后的匀场时间。对于5毫米核磁管,样品体积应为0.6毫升或者样品高度为4厘米。

7应用

例:C10H12O的核磁共振氢谱如下,推导其结构。

1、UN=10+1-6=5 含苯环, 双键或羰基

2、积分比:2:2:2:3:3,符合氢数目。含2个CH3。3.75ppm(s, 3H), CH3O-, 3、5.8-6.5ppm,(m, 2H), 双键2H,且为CH=CHCH3 4、6.5-7.5ppm, 对称四峰,4H,说明苯环对位取代,2峰小于7.27ppm, 说明连有供电子基(CH3O-)。

5、双键2H,J=[1-2]=16Hz,反位。

ABX3系统

第二篇:《红外光谱与核磁共振谱》

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

《红外光谱与核磁共振谱》

《红外光谱与核磁共振谱》

【学习要求】

1、了解红外光谱与核磁共振谱基本原理及其有关的概念

2、了解红外吸收光谱产生的条件

3、了解红外吸收的强度、核磁共振谱中化学位移的概念

4、大致了解各类有机化合物红外吸收光谱和核磁共振谱特征

一、红外吸收光谱

(一)红外吸收光谱的基本原理

红外光波波长位于可见光波和微波波长之间0.75-1000 mm(1 mm = 10-4 cm)其中:

远红外

0.75-2.5 mm

中红外

2.5-25 mm 4000-400 cm-1

近红外

25-1000 mm

红外光波的波长常用波数(cm-1)表示。波数的定义是:每1厘米范围内所含光波的数目。波数 = 104/l(mm)。因此,2.5 mm波长,相当于104/2.5 cm-1,即:4000 cm-1,而25 mm相当于400 cm-1。

1.分子的振动能级

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。红外吸收光谱是分子的振动-转动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯转动光谱。

2、基本振动的类型

一般把分子的振动方式分为两大类:化学键的伸缩振动和弯曲振动。

(1)伸缩振动

指成键原子沿着价键的方向来回地相对运动。在振动过程中,键角并不发生改变,如碳氢单键,碳氧双键,碳氮三键之间的伸缩振动。伸缩振动又可分为对称伸缩振动和反对称伸缩振动。

(2)弯曲振动

弯曲振动又分为面内弯曲振动和面外弯曲振动,用d、g表示。如果弯曲振动的方向垂直于分子平面,则称面外弯曲振动,如果弯曲振动完全位于平面上,则称面内弯曲振动。剪式振动和平面摇摆振动为面内弯曲振动,面外摇摆振动和扭曲变形振动为面外弯曲振动。以-CH2-:剪式振动、平面摇摆振动、面外摇摆振动、扭曲变形振动

3、影响峰数减少的因素

(1)红外非活性振动

(2)分子结构对称,某些振动频率相同。

(3)强宽峰复盖频率相近的弱而窄的峰。

(4)在红外区域外的峰。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(5)别弱的峰或彼此十分接近的峰

(二)红外吸收光谱产生的条件

一定波长的红外光照射被研究物质的分子,若辐射能(hn)等于振动基态(Vo)的能级(E1)与第一振动激发态(V1)的能级(E2)之间的能量差(DE)时,则分子可吸收能,由振动基态跃迁到第一振动激发态(V0(r)V1):

DE = E2a)

弱(又称倍频峰)

V。(r)V3

二级泛频带(3nE(+1/2)= g·h/2p·B0 上式表明,D E 与外加磁场B0的强度有关,D E随B0场强的增大而增大。

若在与B0垂直的方向上加一个交变场B1(称射频场),其频率为n1。当n1 = n0时,自旋核会吸收射频的能量,由低能态跃迁到高能

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

态(核自旋发生倒转),这种现象称为核磁共振吸收。

(二)弛豫过程

当电磁波的能量(hv)等于样品某种能级差DE时,分子可以吸收能量,由低能态跃迁到高能态。高能态的粒子可以通过自发辐射放出能量,回到低能量,其几率与两能级能量差DE成正比。一般的吸收光谱,DE较大,自发辐射相当有效,能维持Boltzmann分布。但在核磁共振波谱中,DE非常小,自发辐射的几率几乎为零。想要维持NMR信号的检测,必须要有某种过程,这个过程就是弛豫过程。即高能态的核以非辐射的形式放出能量回到低能态,重建Boltzmann分布的过程。

(三)化学位移

1、化学位移的产生

1)电子屏蔽效应

在外磁场B0中,不同的氢核所感受到B0是不同的,这是因为氢核外围的电子在与外磁场垂直的平面上绕核旋转的同时产生一个与外磁场相对抗的感生磁场。感生磁场对外加磁场的屏蔽作用称为电子屏蔽效应。感生磁场的大小与外核场的强度有关,用s·B0表示,s称屏蔽常数。

s的大小与核外电子云的密度有关。核外电子云密度越大,s就越大,s·B0也就越大。在B0中产生的与B0相对抗的感生磁越强,核实际感受到的B0(称有效磁场,用Beff表示)就越弱。可表示如下:Beff = B0 s)

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

氢核外围电子云密度的大小,与其相邻原子或原子团的亲电能力有关,与化学键的类型有关。如CH3-Si,氢核外围电子云密度大,s·B0大,共振吸收出现在高场;CH3-O,氢核外围电子云密度小,s·B0亦小;共振吸收出现在低场。

2)化学位移

同一分子中不同类型的氢核;由于化学环境不同,其振动频率亦不同。其频率间的差值相对于B0或n0来说,均是一个很小的数值,仅为n0的百万分之十左右。对其绝对值的测量,测量,难以达到所要求的精度,且因仪器不同(导致s·B0不同)其差值亦不同。例如60 MHz谱仪测得乙基苯中CH2、CH3的共振吸收频率之差为85.2 Hz,100 MHz的仪器上测得为142 Hz。

为了克服测试上的困难和避免因仪器不同所造成的误差,在实际工作中,使用一个与仪器无关的相对值表示。即以某一标准物质的共振吸收峰为标准(B标或n标),测出样品中各共振吸收峰(B样或n样)与标样的差值DB或Dn(可精确到1Hz),采用无因次的d值表示,d值与核所处的化学环境有关,故称化学位移。d = DB/B标 ′ 106 ; d = Dn/n标′ 106,n标与n0相差很小,d = Dn/n0′ 106。n0为仪器的射频频率,Dn可直接测得,为前者百万分之一。对与1H NMR,d值为0-20 ppm,60 MHz的仪器,1ppm=60Hz,100 MHz的仪器,1ppm=100Hz。

2、化学位移的表示

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

标准样品:最理想的标准样品是(CH3)4Si,简称TMS。TMS有12个化学环境相同的氢,在NMR中给出 尖锐的单峰易辨认。NMR与一般有机化合物相比,氢核外围的电子屏蔽作用较大,共振峰位于高场端,对一般化合物的吸收不产生干扰。TMS化学性质稳定,沸点27 °C,一般不与待测样品反应,且又易于从测试样品中分离出,还具测有与大多数有机溶剂混溶的特点。1970年,国标纯粹与应用化学协会(IUPIC)建议化学位移采用d值,规定TMS为0 ppm, TMS左侧d为正值,右侧d值为负。早期文献报道化学位移有采用t值的,t与d之间的换算式如下:d = 10J/2)= hn1

DE2 = h(nb + J/2)= hn2

n2J/2)和(na + J/2)处,峰间距等于Jab,J为偶合常数。

所以自旋-自旋偶合是相互的,偶合的结果产生谱线增多,即自旋裂分。偶合常数(J)是推导结构的又一重要参数。在1H NMR谱中,化学位移(d)提供不同化学环境的氢。积分高度(h)代表峰面积,其简比为各组氢数目之简比。裂分蜂的数目和J值可判断相互偶合的氢核数目及基团的连接方式。

同碳偶合 是指间隔2个单键的偶合,同碳上质子间的偶合(Ha-C-Hb)称同碳偶合,偶合 常数用2JHH。

邻位偶合 邻位碳上质子间的偶合(HaC-CHb)称邻位偶合,偶合数用3JHH表示。

远程偶合 大于叁键的偶合称远程偶合。

大部分链状化合物,由于分子内部的快速运动,表现出磁全同,尽管可以利用某些特殊的实验方法(如同位素取代)测出它们之间的偶合常数,但在谱图中并不表现出裂分。2J主要受取代基电子效应的影响和键角的影响。

2、一级谱

分子中核之间相互作用时,仅产生简单的裂分行为,且两组偶合精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

核之间的化学位移之差Dn远小于它们之间的偶合常数,即Dn/J 3 6。一级谱的几个特征

(1)全同的质子只有偶合,但不出现裂分,在NMR上只出现单峰。如OCH3。

(2)邻质子偶合所具有的裂分数,由相邻质子数目决定,即n + 1 规律:某组环境完全相等的n个核(I=1/2),在Bo中共有(n + 1)种取向,使与其发生偶合的核裂分为(n + 1)条峰。这就是n + 1 规律,概括如下:

某组环境相同的氢若与n个环境相同的氢发生偶合,则被裂分为(n + 1)条峰。

某组环境相同的氢,若分别与n个和m个环境不同的氢发生偶合;且J值不等,则被裂分为(n + 1)(m + 1)条峰。如高纯乙醇,CH2被CH3裂分为四重蜂,每条峰又被OH中的氢裂分为双峰,共八条峰[(3 + 1)×(1 + 1)= 8。

实际上由于仪器分辨有限或巧合重叠,造成实测峰的数目小于理论值。

(3)只与n个环境相同的氢偶合时,裂分峰的强度之比近似为二项式(a + b)n展开

式的各项系数之比。这种处理是一种非常近似的处理,只有当相互偶合核的化学位移差值Dn >J时,才能成立。

(4)在实测谱图中,相互偶合核的二组峰的强度会出现内侧峰偏高。外侧峰偏低。Dn 越小内侧峰越高,这种规律称向心规则。利

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

用向心规则,可以找出NMR谱中相互偶合的峰。

(5)谱线以化学位移为中心,左右对称;相互偶合的质子,持有相同的偶合常数,即裂分线之间的距离相等。

例5

CH3CH2CH2Br

Cl-CH2CH2Cl

Cl-CH2-O-CH3

(五)核磁共振氢谱解析及应用1、1H NMR谱解析一般程序

1)识别干扰峰及活泼氢峰

2)推导可能的基因

有分子式的计算UN,无分子式的根据MS及元素分析求得分子式。

计算各组峰的质子最简比:

例如,某化合物分子式C14H14,1HNMR出现两组峰;积分简比为5:2,则质子数目之

比为10:4,表明分子中存在对称结构。

判断相互偶合的峰:

判断自旋系统: 分析1H NMR谱各组峰的d范围,质子数目及峰形,判断可能的自旋系统。

识别特征基团的吸收峰:

根据d值,质子数目及一级谱裂分峰形可识别某些特征团的吸收峰。

3)确定化合物的结构

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案、1H NMR谱解析实例

例 1化合物分子式C10H12O,1H NMR谱见图3.38,推导其结构。

解:分子式C10H12O,UN=5,化合物可能含有苯基,C=O或C=C双键;1H NMR谱无明显干扰峰;由低场至高场,积分简比4:2:3:3,其数字之和与分子式中氢原子数目一致,故积分比等于质子数目之比。

d6.5-7.5的多重峰对称性强,主峰类似AB四重峰(4H),为AA'BB'系统;结合UN = 5可知化合物苯对位二取代或邻位二取代结构。其中2H的d<7ppm,表明苯环与推电子基(-OR)相连。3.75 ppm(s,3H)为CH3O的特征峰,d1.83 ppm(d,2H),J = 5.5Hz为CH3-CH=;:d 5.5-6.5 ppm(m,2H)为双取代烯氢(C=CH2或HC=CH)的AB四重峰,其中一个氢又与CH3邻位偶合,排除=CH2基团的存在,可知化合物应存在:-CH=CH-CH3基。

综合以上分析,化合物的可能结构为:

此结构式与分子式相符;分子中存在ABX3系统,AB部分由左至右编号1-8,[1-2] =16Hz(反式偶合)为JAB,X3对A的远程偶合谱中未显示出来;B被A偶合裂分为双峰,又受邻位X3的偶合,理论上应裂分为八重峰(两个四重峰)。实际只观察到6条谱线,由峰形和裂矩分析,第一个四重峰的1线与A双蜂的2线重叠,第二个四重峰的1线与第一个四重峰的4线重叠。峰与峰间距离与d 1.83CH3的精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

裂矩相等。故化合物的结构进一步确定为:

例2 化合物分子式C11H14O3,1H NMR谱见图3.39,推导其结构。

解:分子式C11H14O3,UN=5。图中附加图偏移300Hz(5ppm),d=5.85 + 5=10.85,用D2O交换该吸收峰消失,故为活泼氢的共振吸收,由化学位移值分析该峰可能为COOH或形成分子内氢键的酚羟基的吸收峰。图中共有五组峰,由低场至高场积分简比为1:4:2:4:3;积分简比数字之和与分子中质子数目相等,故该简比等于质子数目之比。

d(ppm):10·85(s,1H)为COOH,或PhOH(内氢键),6.5-8.0(m,4H)为双取代苯,取代基互为邻位或间位;4.2(t,2H)为与氧和另一个CH2相连的CH2基(-OCH2CH2-);1.5(m,4H)为-CH2CH2-;0.9(t,3H)为与CH2相连的CH3。

综合以上分析,苯巧上的两个取代基可能为:-OH,-COOCH2CH2CH2CH3或-COOH,-OCH2CH2CH2CH3。

苯环上取代基位置的分析:d7.7〔dd,1H〕[1-3]=[2-4] “7 Hz,[1-2]=[3-4] ” 2Hz,表明该氢与邻位氢偶合,又与间位氢偶合。具有结构(A)。

d7·3(td, 1H),该氢与两个邻位氢偶合,被裂分为三重峰(J=7 Hz),又与一个间位

氢偶合,每条峰又被裂分为双峰,故化合物具有(B)结构,Ha或

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

Hb均可满足该偶合裂分。

d 6.9(dd,1H)的偶合分析同d7.7氢的偶合分析。d6.7(m,1H)的共振峰,从峰形判断为六重峰(td),低场的二重峰与d6.9高场的二重峰重叠,其偶合分析同d7.3氢的偶合分析。(B)结构的偶合分析均可满足d6.9、6.7的偶合分析。

综合以上分析,未知物的可能结构为:

(C)

(D)

(C)分子间缔合程度因位阻而降低,dCOOH高场位移。(D)形成分子内氢键dOH低场位移,二者1H NMR相近,难以区别,需与其它谱配合(如MS,IR)或查阅标准谱图。实际结构为(D),苯环四个氢的归属可定性分析或利用表3.4的数值计算。

例3 图3.19是化合物C10H10O的1H NMR谱,推导其结构。

解:化合物C10H10O,UN=6,分子中可能含有苯基,C=C或C=O。图谱中有三组,由低场至高场积分简比为6:1:3,等于质子数目之比。d:2.3 ppm(s,3H)为CH3CO,6-7 ppm(d,lH)J =18Hz,为=CH,且与另一个烯氢互为反式。根据向心规则和(n + 1)规律,另一个烯氢的双峰应位于更低场,与7-8 ppm的多重峰重叠。7-8 ppm(m,6H)除1个烯氢(=CH)外,5个氢为苯氢,单取代苯。

综合以上分析,化合物最可能的结构为:

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

根据取代烯烃d的经验计算,Ha位于高场6.37 ppm(实测:6.67 ppm)、Hb位于低场7.61 ppm(实测:7.44 ppm)。

3、芳环及杂芳环上芳氢的偶合

芳环及杂芳环上氢的偶合参照表3.6。取代苯J。=6-9 Hz(邻位偶合),Jm=1-3 Hz(间位偶合),Jp = 0-1 Hz(对位偶合)。Jp 常因仪器分辨不够而表现不出来。取代苯由于J。、Jm、Jp 的存在而产生复杂的多重峰(见图3.20)。

应用举例:化合物分子式C11H12O5,IR分析表明分子中有OH,COOR,无COOH存在,1H NMR谱见图3.20,9.0-11.2 ppm的吸收峰(2H)可重水交换,推导其结构。

解:C11H12O5,UN=6,可能含有苯基,C=C或C=O。由d:6.6-7.3 ppm的

多重峰(3H)判断分子中有苯基存在、且为三取代苯。3.65 ppm(s,3H)为CH3O,3.3 ppm(t,2H)及2.7 ppm(t,2H)为-CH2-CH2-,且与C=O或苯基相连。9.0 及11.2 ppm(2H)可重水交换,结合IR信息判断为酚经基(可能有分子内、分子间

两种形式的氢键存在)。以上分析推导的基团与分子式相比较,还有2个C=O,只可

能是-COCH2CH2COOCH3(因三取代苯,除两个酚羟基外,还有一个取代基)。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

取代基的相对位置由苯环氢的偶合情况来判断。d:7.2 ppm(d, 1H), J = 2

Hz, 表明该氢只与一个间位氢偶合,两个邻位由取代基占有。7.0 ppm(dd, 1H), J = 6 Hz、2Hz, 表明该氢与一个邻位氢及一个间位氢偶合。6.8 ppm(d, 1H), J = 6 Hz,表明该氢只与一个邻位氢偶合。综合以上分析,苯环上取代基的相对

位置为(A),根据苯氢d值的经验计算值,判断化合物的结构为(B)。

4、核磁共振谱:产生原理,基本概念:屏蔽效应、化学位移、自旋偶合、裂分,磁 等同、磁不同等

5、质谱:质谱产生原理,表示方法,质谱与有机物分子结构的关系

精心收集

精心编辑

精致阅读

如需请下载!

第三篇:加制氢试生产小结

置年石化加制氢装置试生产小结

置年石化(扬州)有限公司催化干气制氢装置、油品加氢改质装置、芳烃选择性加氢精制装置于2009年9月开工筹建,到2011年4月底竣工,后于2011年5月初正式投入试生产。

一、试生产准备工作 1.联动试车领导机构 1.1.试车领导小组

组 长:江礼春 副组长:肖永平、朱和清

组 员:郑永安、李君、王宣、孙建兵、梅久成、黄元明、吴金冬、李炜、韦传洋、王旭东、陈曦、赵松、沈俊峰、王宇飞、宋厚钦、雷双潮、董立忠、陈文斌、张根双、赵月球、郑永庭 1.2.试车工作小组

组 长:朱和清

副组长:王宣、黄元明、吴金冬、梅久成、陈曦

组 员:柏伟、马晓、王旭东、龚彦波、周进业、许文兵、王文鹏、董立忠、高远、熊国炎、李光武、袁政飞、罗仁宏、郭平、梁喜平、朱宝银、侯建峰、沈俊峰、张奇营、王宇飞、宋厚钦、雷双潮、钟龙光 1.3.HSE组

组 长:陈 曦 副组长:罗仁洪、詹建华

成 员:吴金冬、侯建峰、柏伟、郭平、梁喜平、朱宝银、蒋卫东、王旭东、龚彦波、周进业、王文鹏、董立忠、高远、熊国炎、李光武、张奇营、宋厚钦、夏宏图、雷双潮及各班组安全负责人等。1.4.综合技术组

组 长:黄元明 副组长:侯建峰、马晓

成 员:陈曦、梅久成、龚彦波、周进业、王文鹏、董立忠、高远、熊国炎、李光武等

1.5.试车生产调度组

组 长:吴金冬

副组长:柏伟、马晓、郭平、赵松

成 员:徐峰、阚磊、刘刚、陈学法、何伟、朱宝银、梁喜平、蒋卫东、郑晓平等。

1.6.试车行政宣传和后勤保卫组

组 长:沈俊峰 副组长:张奇营

成 员:张桂蓉、陈训德等 1.7.试车保镖组

组 长:王旭东 副组长:龚彦波、周进业

成 员:董立忠、张益成、王文鹏、熊国炎、李光武、袁政飞、李立沙、高俊峰、汤建国、田晓平1.8.物资供应、产品销运组

组 长:王宇飞

副组长:宋厚钦、夏宏图、钟龙光 成 员:王海英、段美华、杜心玲、唐漾等 1.9.人员培训

工艺技术骨干、生产班长和主要岗位操作人员都必须经过下列四个阶段的培训,以达到熟悉全流程、建立系统概念,掌握上、下岗位之间和前、后工序之间及装置内、外之间的相互影响关系。1.9.1.第一阶段的培训:基础知识培训

2010年7月1日-----2010年9月10日,为期两个月,培训内容是学习化工基础知识;机械、电气、仪表、分析知识;工艺原理和生产流程及操作。1.9.2.第二阶段的培训:外出实习培训

2010年9月15日-----2010年11月15日,为期两个月,在山东东明石化培训,内容是学习生产控制和操作;机械、仪表的维护和使用;开停车、事故处理等实际工作。

1.9.3.第三阶段的培训:针对加制氢装置培训

2010年11月15日-----2011年1月15日,为期两个月,在装置建设过程中进行培训。培训内容是熟悉本厂生产流程、操作规程和机械、仪表、电气性能,并对照现场实际施工情况进行培训,重点掌握不同工况下的操作和事故处理。1.9.4.第四阶段的培训:岗位培训

2011年1月15日-----2011年3月,为期两个月,员工在经过以上三个阶段的培训后达到上岗要求,上岗后参加现场的预试车工作,在工作中熟悉操作,总结经验。2.特种作业的取证

特种作业是指容易发生人员伤亡事故,对操作者本人、他人及周围设施的安全可能造成重大危害的作业。直接从事特种作业的人员称为特种作业人员。由生产准备组技术部负责制订特种作业人员的取证计划。

根据国家安全生产监督管理局安监管人字[2002]124号文件规定,特殊工种需取得质量技术监督局或安全生产监督局颁发的资格证。3.试生产时间安排 2011年5月1日~ 4.试车的程序

联动试车包括加制氢装置公用系统投用;制氢装置的吹扫、气密,系统干燥置换,催化剂装填、硫化;加氢装置干燥、置换、三剂装填、水运、油运及催化剂的硫化等。开车首先从制氢装置开始,产出合格氢气后,进行加氢装置的试车。在制氢装置产出合格氢气前,油品加氢改质装置结束装完催化剂后的氮气气密,接引合格氢气进行氢气气密及催化剂硫化。进而进行油品加氢改质单元的试车。同时,芳烃选择性加氢精制的前期工作如冲洗、吹扫一并开展。在油品加氢改质单元投料成功后,准备芳烃选择性加氢精制单元的试车。5.联锁及报警系统的调试

5.1.根据设计文件中的联锁/报警整定值表,在工程师站上设定相应数值; 5.2.在系统的信号发生端(即变送器或检测元件处)输入模拟信号,检查系统的逻辑是否正确,检查联锁报警动作是否在规定设置的数值上; 5.3.联锁系统除进行份项试验外,还应进行整套联动试验;

5.4.检查辅助操作台上的紧急停车按钮、试验按钮、复位按钮、信号指示灯等动作是否正确;

5.5.有关与电气部分相关的联锁和报警,应由仪表及电气人员双方密切配合进行。

6.安全管理贮备工作

建立健全各项安全管理制度,严格安全操作规程,确保试运行期间不出任何安全责任事故。

6.1.严格按照试生产方案中的危险因素、对策措施及安全批复意见认真实施。6.2.建立健全安全生产管理制度、各岗位生产操作规程、技术规程,编写了事故预案并进行了救援演练,取得良好教育效果。

6.3.严格人员上岗培训,共培训员工40多人次,特种作业人员全部持证上岗,严格执行安全管理制度及操作规程,坚决杜绝超标及违章现象发生。

二、试生产产量产能及产品质量情况

1.40万吨/年油品加氢改质(215)由于设计原因,目前装置只能达到预期负荷的30%(新鲜进料)。为提高产量,试生产期间采用购买常压柴油和返回加氢产品改善进料性质,来提高产量。

2.40万吨/年芳烃选择性加氢精制(210),试生产期间实现满负荷生产(50t/h)。产品均能达到国Ⅲ标准。

3.20000Nm3/h催化干气制氢,本单元试生产期间根据两套加氢单元耗氢的大小,来调整装置负荷,试生产期间装置负荷基本在实际负荷的60%左右。产品氢目前纯度基本达标99%。

三、安全环保 1.安全消防工业卫生

1.1.加制氢联合装置严格按规范设计和施工,确保生产的安全和员工的健康。1.2.采用了先进的DCS集散控制系统,自动化程度高,既减轻了工人的劳动强度和现场作业时间,也减少了工人接触有毒有害物质的机会。使用先进的独立SIS紧急停车控制系统,在紧急状态下,可实现装置的安全停车,保护人身安全和设备安全。

1.3.在产生较大噪音的部位安装了消音、隔音装置,设置隔音操作室,对人员易接触的高温设备和管线进行了隔热、保温,在可能接触有毒有害物质的区域设置专门的洗眼器、淋浴器。

1.4.按照设计规范,合理设置了安全阀、防爆门、止逆阀等安全设施,设备安全附件齐全;在化工操作岗位配备过滤式防毒面具和空气呼吸器;为检修和生产重要位置配备了安全带、急救绳、急救箱、长管式防毒面具、化学防护服及其他个人防护用品。

1.5.本装置医疗救护依托南京第三医科大学附属医院(原仪化医院),该单位有完善的救护设施,可提供紧急医疗救护。2.消防设施和器材

2.1.扬州化学工业园区设有消防站,现有2辆消防车、人数20人,距离项目本装置约1公里,能够满足火险应急需求。

2.2.消防水系统:实友化工(扬州)有限公司现有消防水管网,压力0.8MPa(稳高压),消防水流量为300L/S,消防水罐2个6000m3。能够满足装置在火灾事故时对消防水的需求(170L/S)。消防水在装置区形成环状,并用阀门分割成若干独立段。消防水管网上有消防栓6个、消防炮5只。

2.3.消防冷却水系统:主要包括中间罐和丙烯球罐的固定式式消防冷却水系统。2.4.火灾报警系统:加制氢联合装置设置火灾自动报警系统,与原有火灾自动报警系统并网,覆盖主装置区、中间罐区、办公楼、仓库、公用工程等。该系统具备消防联动功能。该系统为总线制地址编码型火灾自动报警系统,由报警控制盘、感烟探测器、感温探测器、手动报警按钮、声光报警器、信号模块、控制模块及复示盘等组成。报警控制盘安装在主控室内,防爆手动报警按钮设置在装置区现场和控制室,复示盘安装在消防队。2.5.可燃(有毒)气体检测报警系统:为及时发现氢气、硫化氢、轻烃气等可燃和有毒气体的泄漏事故,装置区设有可燃气体及有毒气体检测报警器。2.6.灭火器配置:为便于扑灭初期火灾,在火灾危险性大的重要场所,包括装置区及罐区配备便携式(重量8Kg)干粉灭火器。

2.7.工业电视监控系统:该监控系统用于监视生产装置的生产情况,设备运转状态和危险情况。电视监控信号传至中心控制室电视监控系统。3.试车安全与工业卫生措施

3.1.贯彻“安全第一,预防为主”的方针,遵守《中华人民共和国安全生产法》,确保装置预试车和投产后符合职业安全卫生的要求,保障劳动者在劳动过程中的安全健康,安全卫生设施必须与主体工程要同时设计、同时施工、同时投产使用。

3.2.成立试车HSE小组,具体领导试车安全工作。落实安全生产责任制,建立健全公司、部门、班组三级安全管理网络,明确各级安全责任人及安全责任。做到安全生产,人人有责。试车安全领导小组对试车安全工作进行安全检查监督。

3.3.建立健全并贯彻执行公司安全管理制度。在操作规程、试车方案中,明确安全注意事项,危险性大的重要试车方案要明确安全措施,对重大危险源评估、监控,并制定应急预案。

3.4.对参与试车的人员进行安全生产教育和技能培训,实施公司、部门、班组三级安全教育,保证从业人员具备必要的安全生产知识,熟悉有关的安全生产规章制度和安全操作规程,掌握本岗位的安全操作技能。未经安全教育和技能培训合格的从业人员,不得上岗作业。特种作业人员必须按照国家有关规定经专门的培训,取得特种作业操作资格证书,方可上岗作业。3.5.对涉及生命安全、危险性较大的特种设备,压力容器、危险物品的容器,按照国家有关规定,经取得专业资质的检测、检验机构检测、检验合格,取得安全使用证或者安全标志,方可投入使用。

3.6.做好试车前的“三查四定”工作,对安全状况进行经常性检查,对检查中发现的安全问题,应当立即处理;不能处理的,应采取防范措施,对于较大的安全隐患,没有消除之前禁止试车。

3.7.对重大危险源、危险因素进行控制,制定应急预案,要求试车人员掌握,必要时应进行演练。

3.8.做好防毒、防火、防噪声等工作,落实防护措施,确保安全、气体防护、消防设施器材处于良好备用状态,试车前应逐项确认。

3.9.为试车人员提供符合国家标准或者行业标准的劳动防护用品,并教育、监督员工按照正确方法使用和佩戴。4.环境保护

4.1.“三废”处理措施及方案 4.1.1.废气处理措施

4.1.1.1.加制氢联合装置所用燃料为脱硫后的催化干气含硫量较低,加制氢联合装置的转化炉、加热炉烟气中SO2浓度低(≤3.2mg/Nm3),SO2排放量较少。

4.1.1.2.加制氢联合装置产生的不凝气体进入催化装置脱硫,然后作为催化干气制氢单元的原料循环使用。

4.1.1.3.芳烃精制单元的加氢尾气经甲基二乙醇胺吸硫后,循环使用。甲基二乙醇胺溶液去溶剂再生单元再生,释放出的硫化氢气体进入硫磺回收装置。避免硫化氢气体对环境造成污染。

4.1.1.4.加制氢联合装置事故状态下的气体排放及安全阀等无组织排放,由新建的10000m³气柜储存回收。超量部分由高架火炬焚烧处理。

4.1.2.废水处理措施

4.1.2.1.公司内采取“清污分流”排水方案,装置区/中间罐区/ 厂区前15分钟污染雨水在79#井处阀门切换至污水处理。厂内废水分为生产废水、清净下水和厂区生活污水。生产废水(蒸汽系统排污水、装置区设备/地坪冲洗水、分析化验废水、装置区/中间罐区/ 厂区前15分钟污染雨水、事故污水)与厂区生活污水一同送往污水处理厂处理达标后,排放进青山污水处理厂处理。清净下水同厂区雨水经厂内雨水管网收集后由直接排出厂区。

4.1.2.2.加制氢联合装置生产废水主要为含硫的酸性水,这部分酸性水量约8t/h,通过管道送至酸性水汽提单元,汽提出其中的硫化氢组分,硫化氢至硫磺回收单元。汽提后的净化水排至污水处理场,进行生化处理。

4.1.2.3.催化干气制氢单元设有酸性水汽提塔,工艺冷凝液经汽提后送除氧器,作为锅炉给水重复利用,不外排;汽提气直接排入大气。

4.1.3.废渣处理措施

4.1.3.1.加制氢联合装置燃料使用的是催化干气,不存在废渣排放。4.1.3.2.工艺装置有计划地产生含有镍、钼、铜等贵金属的废催化剂需要送专业单位进行处理。

4.1.3.3.其中富含氧化锌、硫化锌的废脱硫剂,送催化剂厂回收利用。4.1.3.4.污水处理装置污泥压滤后,送专业单位处理。5.HSE设施的配备 5.1.降噪设施、措施

加制氢联合装置设备选型时,尽量选择噪声低、振动小的设备,同时利用地形、建构筑物布置等条件,对产生噪音的设备进行合理布置,防止噪声扩散;各部位连接牢固可靠,管道与强震动的设备连接时,采用柔性连接;对噪声较大的设备,如压缩机、转化炉、风机、泵等采取消声、隔声措施;对蒸汽放空、气体放空管线均设置消音器;个人配备必要的护听器。5.2.防护器具、安全设施

生产现场配置适量个人防护用具,如安全帽、护目镜、安全带、过滤式防毒面具、空气呼吸器及防护服等,在爆炸危险场所的工作人员配备防静电的工作服、鞋、手套;楼梯、平台(防滑钢板)、手扶栏杆、爬梯等应齐全并按要求涂安全色;根据各生产装置的毒物及腐蚀物料的分布及危害情况,设置安全淋浴/洗眼器。

毒气泄漏事故状态下,为保证员工辨别紧急疏散方向,在生产装置区可视性好的制高点,安装醒目的风向标,同时要保证风向标的白天和夜间的可视性;现场安设声音报警装置,确定报警音调与事故类别,并保证报警器在生产现场的音效功率。

四、存在的问题及措施

加制氢联合装置的投产涉及到设计、施工安装、设备制造、生产准备等方方面面。从装置试车准备方面看,预计可能存在一些问题,下面就可能存在的问题及采取的措施阐述如下: 1.1 缺少同类型装置的操作经验

20000m3/h及以上规模的制氢装置在国内已有多套,制氢原料有催化干气、焦化干气、天然气等多种,但我公司现参与催化干气制氢装置试车的人员均未有操作制氢装置的经验。

轻芳烃选择性加氢装置在国内也有多套,我公司的轻芳烃选择性加氢精制装置与此类似,但参与该装置试车的人员绝大部分没有该类装置的开车经验。

油品加氢改质装置是引进杜邦的专利技术,国内属第一次引进,无人参与过类似装置的开车。

生产准备部除了几个管理人员外,只有为数不多的几个人是从现有生产装置抽调出来的,其它为社会或学校的学徒工和学生,面对新装置,有一个熟悉掌握的过程。参与试车的人员虽曾派往山东东明倒班学习两个月,但离熟练操作的程度还较远,需加强试车培训,进一步了解大型化工厂的特点,较快掌握其各项要求,逐步积累一些基础经验,对处理现场突发问题特别是事故状态应进行必要模拟和演练,应进一步加强现场实战培训。1.2 设计、安装、施工可能存在影响试车的因素

一个大工程,在设计、安装、施工过程中,可能存在一些未检查到的问题,有些问题可能在试车过程中暴露出来。应对措施是抓好“三查四定”,试车过程中认真检查,出现问题立即处理。1.3 设备制造质量问题

整个现场设备除2台循环油泵从德国进口外,其他设备均由国内制造,由于时间短、任务重,设备制造质量可能存在问题,在试车过程中有些问题会暴露出来。应对措施是试车前认真检查,试车中注意观察异常现象,反复核对相关数据,做出正确判断。1.4 催化剂装填问题

加制氢联合装置固定床反应器多、催化剂品种多,且转化炉有88根转化管,装填质量要求高,因此要求请专业公司装填。

1.5 现场试车人员偏少,劳动强度较大。应对措施是加强培训,平稳操作,少出事故,必要时增加一些临时开车人员。

1.6 加制氢联合装置在整个试车过程中使用的高压瓦斯、脱盐水、工厂空气、仪表空气、还原氢气、蒸汽,与现有生产装置联系密切,因此不能影响现有装置的正常生产。

第四篇:民族医院核磁共振报告

购置医用磁共振成像设备(MRI)可行性报告

三江县卫生和计划生育局:

我院建院2年,是一所以外科、内科、口腔科、妇科、儿科、口腔科、放射科、检验科等为一体的综合性医院。是三江县城镇居民医保、城镇职工医保、新农合、民政城乡救助定点医院。为加快民营医院发展,提高医疗水平和医疗服务质量,真正意义上解决山区老百姓看病难的实际问题。根据《国家进一步加快民营经济发展的决定的实施意见》文件精神。以及参考《全国关于降低民营医院配置乙类大型医用设备门槛实行备案制管理》要求,我院申请购置医用磁共振成像设备,现将其可行性报告如下:

一、医院基本情况:

院业务用房5500平米,编制60张床位,可开放床位120张。目前拥有数字化X光机(DR),美国GE彩超、美国进口全自动免疫生化仪、全自动生化仪、手术显微镜、全自动麻醉机、C臂X光机、全自动手术床等大型医疗仪器设备。为磁共振成像技术在临床中的应用提供了有力保障。

二、MRI设备的技术发展前景和对临床工作的优势

磁共振技术(MRI)和CT成像技术比较,MRI已显示诸多优势,CT技术是利用X线对人体组织作横断面扫描后成像,对人体有X线辐射损伤,而MRI是通过发射脉冲磁场信号,对人体氢质子磁共振信号进行分析成像,不存在X线辐射损伤。可根据需要对人体进行横断面、失状面、冠状面三维任意角度切层,通过各种角度显示病变,立体感更强,而且在同一切层可采取用不同序列、不同参数扫描,这更有利于对不同生物学特性的组织的充分显示,由于MRI扫描中不同组织信号差异远大于CT上组织间密度差异,使许多病变更易辨认,尤其是细小病变,有利于对病变早期诊断。MRI问世不久就以其强大优势深受临床医学界的欢迎,因其发展势头强劲,方兴未艾,新技术层出不穷,因而有学者预料,21世纪影像医学将全面进入磁共振时代。

三、磁共振的适应的用途:

(1)颅脑MRI自问世以来,因其软组织分辨率高,能充分显示脑灰白质的信号差别,无颅底骨伪影影响等优势,MRI首先被应用于颅脑,MRI对颅脑肿瘤的定位、定性诊断明显高于CT等其它各种影像检查,有研究表明,其定位正确率高达98%,定性亦可达70%~85%左右。因此,颅脑绝大部分疾病均是MRI的首选症

(2)心脑血管病 无需要造影剂即可显示血管病变主要有:烟雾病,Galen静脉瘤,脑顔面血管瘤病,毛细血管扩张症,海绵状血管瘤,皮层下动脉硬化性脑病,颈静脉球瘤,缺血性脑梗死,亚急性脑血肿

(3五官和头颈区 五官靠近颅底,软组织结构丰富,而影像诊断需要矢状、冠状等多平面成像,以明确病变与周围组织结构关系,口咽区结构复杂,这正是MRI的优势所在,具体病种如下:甲状腺相关性眼病,眼眶内肿瘤及类肿瘤病变,内耳及中耳肿瘤,腮腺源性肿瘤,鼻咽癌,口咽区肿瘤,喉咽区肿瘤,颈软组织肿瘤,臂丛神经炎

(4)纵隔、肺部病变:纵隔区结构复杂,病变大多局限于前或后纵隔,呈软组织特性,而MRI具有多平面成像特性,对软组织显示效果良好,因此,对于纵隔病变,MRI比CT优势明显。在肺部病变的诊断方面,以肺部CT为主,MR主要在肺部肿瘤的鉴别诊断方面对肺部CT诊断不足的地方进行有益的补充。

(5)心脏大血管:MR无需造影剂可以直接显示心脏和大血管结构,观察其形态的变化。常规MRI、心脏电影和磁共振血管成像的应用使MRI在心脏大血管疾病检查中独具优势。可用于各种先天性心脏病、心脏缺血性疾病(心梗的癜痕、室壁瘤、心腔内血栓)、心肌疾病(肥厚性及扩张性)、心脏肿瘤、心包疾病和主动脉瘤(诊断夹层动脉瘤)等大血管疾病的诊断,心脏瓣膜病(并能显示前负荷与后负荷增加所致的继发改变)等。

(6)腹部:MR能清楚地显示肝胆胰脾及肾脏等实质性脏器,不用造影剂就可区别肝实质、门脉系统、胆道系统、胰管、肾盂输尿管、肾皮质与肾髓质,并能清楚显示病变的位置、大小、形态、侵犯范围,是腹部实质性脏器病变诊断的首选检查方法;对于早期肝硬化、早期肝癌、肾癌、胰腺癌、胆囊癌的诊断比CT敏感、定性准确。同时,利用水成像技术,无需造影剂就可以进行MRCP(MR胰胆管造影)、MRU(MR肾盂输尿管造影)检查,完全无创,有助于定性诊断,还可确定病变的范围和有助于临床分期。对于肾上腺的检查MR对病变区病理成分的鉴别具有CT不可比拟的优势,亦是首选。另外对于胃癌、结、直肠癌的术前分期MR亦是首选。(7)盆腔:盆腔内主要是软组织结构,诸如子宫,卵巢,膀胱和前列腺均是MRI检查的首选,较CT具有敏感、无辐射、病变显示清楚、定性准确的优势。

(8)关节与骨骼 骨髓、软骨、半月板与肌肉韧带疾病首选MR(9)脊柱及脊髓病变首选MR

四、医疗服务需求

随着社会的发展,人们生活方式的改变,当前颈腰椎间盘突出疾病的患者越以增多,但三江县颈肩腰腿痛专科服务明显不足,此类患者就诊十分困难。为此,我院颈肩腰腿痛专科开设40张床位,收治颈椎病、椎间盘突出症患者,诊疗方法是在经磁共振检查并进行精确定位和确诊,采用微创手术治疗,减少了治疗痛苦,缩短了住院时间,降低了住院费用。止痛效果明显,恢复快,疗效确切,得到患者的欢迎。提高了患者的工作能力和生活质量。同时我院还加大了预防宣教工作,劝导患者改变不健康的行为方式,降低和消除影响脊柱健康的危险因素,有利于椎间盘突出症的康复。

五、设备应用发展前景:

自二十世纪八十年代磁共振投入临床应用以来,磁共振已成为多种临床疾病检查的重要手段。现在已成为医院的大型基础设备和临床不可缺少的检查设备,也是提高医疗质量的重要手段。我院处于城区主干道,交通便利、辐射面积广,且融安、融水、龙胜、三江各县都无此设备。颈腰椎疾病病人较多。由于我院主要是治疗颈椎病、腰椎间盘突出症,而磁共振的上述特性在提高骨科疾病的诊疗水平方面极具优势。所以,我院必须购置一台临床不可缺少的检查设备磁共振装置。其型号为:贝斯达0.35T装置。

六、运行效果分期预测

(一)磁共振可以使我院更好的开展骨科手术项目及其它疑难病症的诊断,提高病情诊断的准确性,更好的为病人服务。

(二)有了磁共振以减少病人转出检查,方便了患者就医,也减少了病源的流失,同时减轻的病人的诊疗费用。

(三)病人到我院就医十分方便,解决了需到疼痛专科就诊病人“看病难、看病贵”的问题。同时还提高医院经济效益。

七、投资项目财务分析 资金来源:三江民族医院出资 筹措方式:自筹

投资预算:300万元人民币。

随着人民群众的生活水平不断提高,医疗服务需求进一步增强,特别是适应患者需求的颈肩腰腿疼痛专科具有良好的发展前景。因此,我院购置磁共振装置将为人民群众提供质优价廉的疼痛专科服务,一定会产生良好的社会效益和可靠的经济效益。预计3—5年即可收回投资成本。

八、配置条件自我评价

医院根据医疗市场预测,选定了颈肩腰腿疼痛专科发展方向。按照既定的医疗服务目标,已经完善了科室设置和基本医疗设备、设施配置,运转良好。完全具备条件和能力,自筹资金进行再投入,购置磁共振以增强医院的服务能力和服务水平,加速医院自身的发展,有利于整个卫生事业的发展;符合国家鼓励民营医院发展的有关政策和意见。

三江民族医院

2016年10月12日

第五篇:核磁共振实验报告(写写帮整理)

核磁共振实验报告

一、实验目的:

1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用;

二、实验原理

核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。

原子核可按I的数值分为以下三类:

1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。

3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。

以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级):

a.b.与外磁场平行,能量低,磁量子数m=+1/2;与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。

三、仪器设备结构

核磁共振波谱仪(仪器型号:Bruker AVANCE 400M)由以下三部分组成: 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。

计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。

2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、各种功放。

AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化 样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作 不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘 或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。

本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的 磁场。室温匀场系统被安装在磁体的下端,是一组载流线圈,通过补充磁 场均匀度来改善磁场一致性。探头的功能是支撑样品,发射激发样品的射

频信号并接收共振信号,探头被插入到磁体的底部,位于室温匀场线圈的 内部。同轴电缆把激发信号从控制放大器传送至探头,并把NMR信号从样 品处传回到接收器。

四、实验步骤

1.样品制备

对于固体样品,如果使用5mm样品管,按照丰度,氢谱质量分数5%-10%,碳谱20%左右。1H-NMR谱样品几毫克至几十毫克,对于13C-NMR谱则要适量增加样品质量。加入0.5mL左右氘代试剂,混合均匀,用生料带封住管口,减少溶剂挥发。盖上核磁管帽,做好标记。2.样品手动检测

① 开机:打开计算机、主机、辅助设备。

② 进入操作界面,利用相关软件进行试验参数的设置。

③ 进样:将样品管插入转子,定深量筒控制样品管插入转子的深度。确保样品与量筒内的线圈对齐。

④ 样品的升降是由一股压缩空气控制的。按下BSMS键盘上的LIFT键。可以听到气流的声音,取下前一个样品,把新样品放到气垫上。再次按下LIFT键。样品会缓慢落进磁体,精确进入探头中的位置。在往磁体中放入样品前,确认存在气流。(可以听到气流声)⑤ 在命令行输入指令edc,对新样品进行命名。

⑥ 在命令行键入lock命令,并选择相应的溶剂。根据配置样品所用的氘代试剂。

⑦ 锁场完成后,在命令行输入指令atma,进行调谐。

⑧ 调谐完成,在命令行输入topshim,可以进行自动匀场,也可以进行手动匀场,具体操作是在BSMS键盘进行调整。磁场是三维的,所以匀场项的名称使用XYZ坐标系统来反应相应的代数功能。⑨ 命令行输入rga。自动设定接收机增益。⑩ 命令行输入ns。设定扫描次数。⑪ 命令行输入zg。系统开始采集数据。

⑫ 数据采集完成,在命令行输入efp,将采集结果进行傅里叶变换。输入apk,进行自动相位校正,输入absn,进行基线校正。⑬ 对谱图进行定位,标峰,积分处理,打印谱图。⑭ 实验结束,关闭相关软件及计算机。3.样品自动检测

① 在计算机上打开自动进样器控制系统Icon NMR:automation。

② 将样品管插入转子,定深量筒控制样品管插入转子的深度。擦拭干净后 放入自动进样器,记录样品编号。

③ 在自动进样器控制系统内双击对应样品编号进行设置:Name、No.、Solvent、Experiment、Par。设置完成后submit,点击start,仪器将自动 完成测定。

④ 在实验记录本上对所做实验进行记录。⑤ 样品测定结束后从自动进样器上取下。

五、应用

核磁共振在各个领域的应用都是相当广泛的,下面简单介绍下近年来核磁共振技术在化学分析、材料科学、药学、生物学、煤化学等领域的应用。

核磁共振在化学分析中正发挥越来越大的作用,它不仅是一种研究手段,也是常规分析中不可缺少的一种手段。用它可以对样品进行定性和定量的分析,确定反应过程及反应机理。用它还可以研究各种化学键的性质,研究溶液中的动态平衡,测量液体的粘度,确定各种物质在生产过程中的一些其它性质和控制生产流程等。另外1H、13C、15N、31P等核磁共振谱在确定有机化合物分子结构和变化,原子的空间位置和相互间的关联等方面也得到普及。

在材料科学领域高功率固体NMR是研究高分子聚合物、玻璃、陶瓷、煤、树脂、新型表面活性剂、压电物质的研究等非常重要的、有的时候甚至是唯一的方法。应用化学中精细有机合成的进一步发展,各种新型表面活性剂的合成、涂料的改性、水处理技术添加剂的研制、新型激光材料以及有机反应过程的动态和稳态的研究都必须依靠固体NMR谱仪的配合。利用核磁共振方法解决某些属于分子结构和晶体结构的问题,研究固体中分子运动的性质,研究结构相变(例如铁电体的结构相变),研究磁性材料中不同晶格位置上的超精细场等。

在药学领域,核磁共振技术在创新药物研究及药物质量控制方面具有广泛的应用,不仅能定性定量分析药物及杂质,而且能建立复杂的中药指纹图谱。此外,液体NMR还能分析药物的稳定性和药物代谢,测定靶蛋白的溶液空间结构及其动力学,研究靶蛋白与药物分子的相互作用不仅能定性定量分析药物及杂质,而且能建立复杂的中药指纹图谱,等等。近年来,国际药典、欧洲药典及美国药典指定NMR谱学技术作为对药物进行分子结构鉴定和药剂的定量研究主要工具。

分子生物学中一个众所周知的事实是蛋白质生物活性和功能的多是在溶液中显现的,而能用于探测溶液中蛋白质的三维构象的唯一手段就是NMR。正因为如此,2002年的诺贝尔化学奖授予瑞士ETH的Wűthrich,表彰他用多维NMR波谱学在测定溶液中蛋白质结构的三维构象方面的开创性贡献。而最具前沿科学的不溶性蛋白或膜蛋白空间三位结构研究也需要用到固体核磁。

1955年,英国的纽曼(P.C.Newman)等人首先将核磁共振氢谱(1H-NMR)用于煤的研究,1H-NMR能详细给出煤及衍生物中氢分布的信息,此后迅速得到了广泛的应用。1960年,英国人拉德纳(W.R.Ladner)和布朗(J.K.Brown)利用氢分布和元素分析数据,提出了煤的三个重要结构参数(芳香环取代度σ,芳

1碳率fa,芳香环缩合度Haru/Car)的计算公式,这些公式已得到广泛应用。H-NMR需要在溶液状态下测定,所以主要用于煤的抽提物、煤液化产物以及煤热解液体产物等的表征。1968年,Retcofsky等首先将核磁共振碳谱(13C-NMR)应用到煤液化产品的分析中,从

3C-NMR谱可以获得煤的碳骨架和芳香度等信息,且从13C-NMR得到的芳香度是直接观测的,优于任何其它方法所得值;除此之外,还能观察到不与质子相连的基团中碳的信息。所以,将1H-NMR与13C-NMR这

13两种方法结合起来,取长补短,已被广泛用于研究煤及其衍生物的结构。C-NMR既可以用于液体样品测试,也可以用于固体样品测试。由于煤中部分甚至大部分是不能被溶剂溶解的大分子骨架结构,所以对固体煤的直接研究非常重要,直接用固体煤进行测试时,可以消除由于溶剂抽提造成的溶剂作用,以及不能完全抽取而带来的误差。固体核磁共振碳谱可在不破坏原煤结构的情况下直接分析固体煤样品及其衍生物,获取其结构信息。利用魔角自旋(MAS)、交叉极化(CP)、旋转边带抑制(TOSS)及偶极去相(DD)等技术,可提高固体13C NMR的灵敏度和分辨率,获得煤的固体精细的的煤的结构参数。

C-NMR高分辨谱,从而获得准确的芳香度及更

下载核磁共振氢谱小结word格式文档
下载核磁共振氢谱小结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年核磁共振室工作总结

    核磁共振室2014年工作总结 2014年在新一届院领导集体的正确领导和大力支持下,在全体同志的共同努力下,我科以新设备购置为契机,紧紧围绕“党的群众路线教育实践活动”这一主题,......

    核磁共振研究的历史

    核磁共振研究的历史 刘志军 (中科院自然科学史研究所,北京 100190;忻州师范学院物电系,山西 034000) 摘要:本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面......

    关于核磁共振的可行性论证报告

    关于核磁共振的可行性论证报告 目 录 第一章 设备总论 第一节 设备基本情况 第二节设备购买单位 第三节 设备可行性论证结论 第二章 设备背景分析 第一节 国家政策背景 第二......

    核磁共振室20**年工作总结

    核磁共振室20**年工作总结20**年在新一届院领导集体的正确领导和大力支持下,在全体同志的共同努力下,我科以新设备购置为契机,紧紧围绕“党的群众路线教育实践活动”这一主题,密......

    核磁共振方法研究蛋白质结构

    核磁共振方法研究蛋白质结构 维特里希教授创建的方法是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁......

    核磁共振系统的数字化研究

    核磁共振系统的数字化研究 【摘要】:核磁共振(NMR)技术作为一种研究物质结构的重要工具,在物质检测和医学影像等领域中得到了广泛的应用。与此同时,其应用领域的拓展和科学研......

    储氢罐研究报告

    储氢罐研究报告 储氢罐是一种氢气储存的容器。现有氢气的储运容器技术包括高压储氢、液氢储存、金属氢化物储氢、低温吸附储氢、纳米碳管高压吸附储氢以及液体有机氢化物储......

    氢站、油库试卷答案

    氢站、油库考试试题 班组: 姓名:一、填空(24分,每空2分) 1. 氢在常态下是一种 _无色__、__无味__、__无溴___的气体。 2. 氢气在纯氧中的爆炸极限为氢气:__4 %——_95__%。 3. 在制......