1.1空间几何体的结构说课稿

时间:2019-05-12 23:18:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.1空间几何体的结构说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.1空间几何体的结构说课稿》。

第一篇:1.1空间几何体的结构说课稿

1.1空间几何体的结构说课稿

教材的地位和作用

空间几何是研究现实世界中物体的形状,大小与闻之关系的数学学科,日常生活随处可见,在建筑与工程学中是一个非常寄出的环节,价值深远。学生在学习《空间几何体的结构》前已经熟悉了一些基本的平面图形和一些简单的抽象立体图形,都遵循着从一般到特殊的认知规律,从平面到到空间的过度,所以学习本节知识与应用也是为未来的点,线,面关系打下基础,也起到了整体几何结构承接基本几何结构的的作用。

本节课的重点是让学生感受大量空间实物及模型,概括出棱柱,棱锥,棱台的结构特征。学情分析:

在初中学习中,课程“空间与图形”的基础上从对空间几何体的整体观察入手,主要是归类多面体与旋转体,认识棱柱,棱锥,棱台。通过对空间几何体的整体把握,来培养学生的观察能力,空间想象能力,使学生对物体形状的认识从表面感觉上升到理性认识。

同学们在初中阶段基础参差不齐,认识上也有很大偏差,特别对概念和公式的理解也不是太深入,所以更应让学生学会自主学习,鼓励学生,大胆讨论交流,认真总结,建立自信。学法设计:

张教授在<诱思探究学科教学论》中指出:“教学的全部核心问题是:教师的每个教学策略,不是以教为中心设计教学过程的,而是以学生为主体去组织教学进程;把学生的学习主体地位作为实施教学的基本点,又使教师的引导作用成为实现学生主体地位的根本保证,两者和谐统一,才能最优化发挥教学系统的整体功能”

“自主探究,合作交流”在学生已有的事物结构的理解上,通过观察,幻灯片得出“空间几何”的概念。

一 感知实图,引诱学生相互讨论,交流探究,归纳总结,形成概念。二 自主学习,交流配合认识理解,掌握特点,引导学生对棱柱,总结归纳结论并展示。、三 设置导向性信息由浅入深由学生讨论研究棱柱的概念。类比得出棱锥,棱台的特点。

四 引导学生进行“自主探究,合作交流”使学生全身心投入到体验过程中,真正实现自我。学习目标:

1,能根据已有知识通过观察,直观感知几何结构特征对空间物体进行分类 2,掌握多面体,旋转体,棱柱,棱锥,棱台并总结三者的概念 教学流程:

一,回忆旧知,引入新课

<课件投影> 请观察以下16个图形,回答下列问题。(认真阅读课本独立思考,同桌可以相互议论然后自由举手发言)

(10分钟主动学习交流,讨论回答多面体与旋转体)

1·观察下面的图片,这些图片中的物体包含了哪几种几何体? 2·什么叫多面体?哪些是多面体?它们的共同结构特征是什么? 3·什么叫旋转体?哪些是旋转体?它 们共同的结构特征是什么? <课件投影> 多面体概念,旋状体概念 二 深入探究,认识特征 <课件投影>

(一)请认真阅读课本第3页下边一段话和第4页整页,逐步回答 下列问题。在独立思考的基础上熟记问题的答案。

1·说一说棱柱的结构有那些特征?据此请给棱柱下一个定义。说说棱柱的底面,侧面,侧棱,顶点的具体含义是什么?

2·说一说棱锥的结构有那些特征?据此请给棱锥下一个定义。说说棱锥的底面,侧面,侧棱,顶点的具体含义是什么?

3·说一说棱台的结构有那些特征?据此请给棱台下一个定义。说说棱台的底面,侧面,侧棱,顶点的具体含义是什么?

<课件投影> 棱柱特征,定义,底面,侧面,侧棱,顶点。

棱锥特征,定义,底面,侧面,侧棱,顶点。棱台特征,定义,底面,侧面,侧棱,顶点。

(共自学时间20分钟,老师参与到其中)

(二)在以上独立思考的基础上,开展小组活动,进一步熟悉以下答案,可以相互问答,保证每位同学都能熟练掌握。

<课件投影>棱柱,棱锥,棱台的基本知识。三 加深理解,迁移运用

<课件投影>

(一)请分别在独立思考的基础上,相互议论,举手自由发言,回 答下列问题 1.下列哪些是棱柱?

2.如图所示长方体ABCD-A’B’C’D’当用平面BCFE把这个长方体分成两部 分后,各部分形成的多面体还是棱柱吗?

3.下列多面体都是棱锥吗?如何在名称上区分这些棱锥?如何用符号表示?

4.下列多面体一定是棱台吗?如何判断?

四 作业

1.P8 选择题1,(1),(2),(3)2.第5题

3.有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗? 4.一个棱锥至少有几个面?一个N棱锥有分别有多少个底面和侧面?有多 少条侧棱?有多少个顶点?

第二篇:空间几何体的结构教学设计

空间几何体的结构教学设计

方正县第一中学:石红

空间几何体的结构教学设计

教学目标:

1.知识与技能: 通过观察实物、图片,使学生理解并能归纳出柱、锥、台、球的结构特征

2.过程与方法:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。

3.情感态度价值观:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。培养学生善于通过观察实物形状到归纳其性质的能力。

教学重点:

让学生通过观察实物及图片概括出棱柱、棱锥、棱台的结构特征; 教学难点:

七种空间几何体的分类及简单组合体的判断。教学方式:多媒体 教学过程:

一、引入

幻灯片图片导入生活中很多实物可以抽象出几何体。

二、几种基本空间几何体的结构特征

1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 用各顶点字母表示棱柱,如棱柱ABCDEF-A’B’C’D’E’F’。

2、棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥…… 其中三棱锥又叫四面体。棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。

3、棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分叫做棱台。

原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、顶点。

由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……

4、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。圆柱用表示它的轴的字母表示,如圆柱O’O。

5、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面围成的旋转体。圆锥也有轴、底面、侧面和母线。圆锥也用表示它的轴的字母表示,如圆锥SO。

棱锥和圆锥统称为锥体。

6、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台。圆台也有轴、底面、侧面、母线。

7、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体。

半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径,球常用球心字母O表示,如球O。

三、空间几何体的分类

简单空间几何体概括分类为:柱体、锥体、台体和球体。但现实世界中的物体除了简单的几何体外,还有大量的几何体是由简单几何体组合而成,简单组合体的构成有两种基本形式:

1、由简单几何体拼接而成,如课本P7(1)(2);

2、由简单几何体截去或挖去一部分而成,如课本P7(3)(4)。

判断ppt中一些简单组合体的结构特征。

四、巩固练习

1、有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2、棱柱的任何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

五、归纳总结

由学生总结归纳。教师补充。

六、布置课后作业

优化设计《空间几何体的结构》

第三篇:必修2空间几何体的结构教案

1.1

空间几何体的结构教案

教学目标:

1.知识目标: 能根据几何结构特征对空间物体进行分类;掌握棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;

2.能力目标:会表示有关几何体;能判断组合体是由哪些简单几何体构成的。

3.情感目标:通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。教学重点:

七种空间几何体的结构特征。教学难点:

七种空间几何体的分类及简单组合体的判断。教学方式:多媒体 教学过程:

一、知识回顾

1.在平面几何中,我们认识了三角形,正方形,矩形,菱形,梯形,圆,扇形等平面图形.那么对空间中各种各样的几何体,我们如何认识它们的结构特征?

2.对空间中不同形状、大小的几何体我们如何理解它们的联系和区别?

二、知识探究

思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体.你能列举那些空间几何体的实例?

思考2:观察下列图片,你知道这图片在几何中分别叫什么名称吗?

思考3:如果将这些几何体进行适当分类,你认为可以分成那几种类型? 思考4:图(2)(5)(7)(9)(13)(14)(15)(16)有何共同特点?这些几何体可以统一叫什么名称?(多面体)思考5:图(1)(3)(4)(6)(8)(10)(11)(12)有何共同特点?这些几何体可以统一叫什么名称?(旋转体)

空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体。

多面体的是定义:由若干平面多边形围成的几何体叫做多面体。旋转体的定义:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.

三、几种基本空间几何体的结构特征

1、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 用各顶点字母表示棱柱,如棱柱ABCDEF-A’B’C’D’E’F’。

2、棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥…… 其中三棱锥又叫四面体。棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。

3、棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分叫做棱台。

原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、顶点。

由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……

4、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体。

旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。圆柱用表示它的轴的字母表示,如圆柱O’O。

5、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面围成的旋转体。圆锥也有轴、底面、侧面和母线。圆锥也用表示它的轴的字母表示,如圆锥SO。

棱锥和圆锥统称为锥体。

6、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台。圆台也有轴、底面、侧面、母线。

7、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体。

半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径,球常用球心字母O表示,如球O。

四、空间几何体的分类

简单空间几何体概括分类为:柱体、锥体、台体和球体。但现实世界中的物体除了简单的几何体外,还有大量的几何体是由简单几何体组合而成,简单组合体的构成有两种基本形式:

1、由简单几何体拼接而成,如课本P7(1)(2);

2、由简单几何体截去或挖去一部分而成,如课本P7(3)(4)。

判断ppt中一些简单组合体的结构特征。

五、巩固练习

1、有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2、棱柱的任何两个平面都可以作为棱柱的底面吗?

4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

六、归纳总结

多面体 棱柱 棱锥 棱台

旋转体 圆柱 圆锥 圆台 球

柱体 锥体 台体 球体

七、布置课后作业

非常学案课时1

第四篇:空间几何体教案设计

第一章:空间几何体

1.1.1柱、锥、台、球的结构特征

一、教学目标 1.知识与技能

(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7 练习1、2(1)(2)

课本P8习题1.1 第2、3、4题

第五篇:立体几何-8.1 空间几何体的结构及其三视图和直观图(教案)

响水二中高三数学(理)一轮复习

教案 第八编 立体几何 主备人 张灵芝 总第35期

§8.1 空间几何体的结构及其三视图和直观图

基础自测

1.下列不正确的命题的序号是.①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥

④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥 答案 ①②③

2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是.答案 60°

3.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是 cm2.答案(20+42)

4.(2008·宁夏文,14)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为.答案 43

5.已知正三角形ABC的边长为a,那么△ABC的直观图△A′B′C′的面积为.答案 616a2

例题精讲

例1 下列结论不正确的是(填序号).①各个面都是三角形的几何体是三棱锥

②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 ④圆锥的顶点与底面圆周上的任意一点的连线都是母线 答案 ①②③

解析 ①错误.如图所示,由两个结构相同的三棱锥叠放在一起 构成的几何体,各面都是三角形,但它不一定是棱锥.214

②错误.如下图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.例2 已知△ABC的直观图A′B′C′是边长为a的正三角形,求原三角形ABC的面积.解 建立如图所示的xOy坐标系,△ABC的顶点C在y轴上,AB边在x轴上,OC为△ABC的高,把y轴绕原点顺时针旋转45°得y′轴,则点C变为点C′,且OC=2OC′,A、B点即为A′、B′点,AB=A′B,已知A′B′=A′C′=a,在△OA′C′中,由正弦定理得OCsinOA'C'=A'C'sin45,所以OC′=

sin120sin4512a=

62a, 所以原三角形ABC的高OC=6a,所以S△ABC=×a×6a=

62a

2.例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解

由三视图易知,该正三棱柱的形状如图所示: 且AA′=BB′=CC′=4cm,正三角形ABC和正三角形

A′B′C′的高为23cm.∴正三角形ABC的边长为 |AB|=23sin60=4.∴该三棱柱的表面积为 S=3×4×4+2×12×42sin60°=48+83(cm2).215 体积为V=S底·|AA′|=12×42sin60°×4=163(cm3).故这个三棱柱的表面积为(48+83)cm2,体积为163cm3.例4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积.解 如图所示,△ABE为题中的三角形,由已知得AB=2,BE=2×BF=S=122332=3, 22BE=233,AF=12ABBF83=443=

83,∴△ABE的面积为

×BE×AF=×3×=2.∴所求的三角形的面积为2.巩固练习

1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是(填序号).①等腰四棱锥的腰与底面所成的角都相等

②等腰四棱锥的侧面与底面所成的二面角都相等或互补 ③等腰四棱锥的底面四边形必存在外接圆 ④等腰四棱锥的各顶点必在同一球面上 答案 ①③④

2.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于.答案 22a2

3.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为

8、高为4的等 腰三角形,左视图(或称侧视图)是一个底边长为

6、高为4的等腰三角形.(1)求该几何体的体积V;

(2)求该几何体的侧面积S.解(1)由该几何体的俯视图、正视图、左视图可知,该几何体是四棱锥,且四棱锥的底面ABCD是边长为6和8的矩形,高VO=4,O点是AC与BD的交点.∴该几何体的体积V=13×8×6×4=64.(2)如图所示,侧面VAB中,VE⊥AB,则

216 VE=VO2OE2=4232=5∴S△VAB=

12×AB×VE=

12×8×5=20 侧面VBC中,VF⊥BC,则VF=VO∴S△VBC=122OF2=4242=42.×BC×VF=12×6×42=122∴该几何体的侧面积

S=2(S△VAB+S△VBC)=40+242.4.(2007·全国Ⅱ文,15)一个正四棱柱的各个顶点在一个直径为2 cm的球面上.如果正四棱柱的底面边长为1 cm,那么该棱柱的表面积为 cm2.答案 2+42

回顾总结

知识 方法 思想

课后作业

一、填空题

1.利用斜二测画法可以得到:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上正确结论的序号是.答案 ①②

2.如图所示,甲、乙、丙是三个几何体图形的三视图,甲、乙、丙对应的标号是.①长方体;②圆锥;③三棱锥;④圆柱.答案 ④③②

3.下列几何体各自的三视图中,有且仅有两个视图相同的是.答案 ②④

4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下:

根据三视图回答此立体模型的体积为.217 答案 5 5.棱长为1的正方体ABCD—A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为.答案 2

6.(2008·湖北理)用与球心距离为1的平面去截球,所得的截面面积为,则球的体积为.答案 823

7.用小立方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体至少要 个小立方块.最多只能用 个小立方块.答案 9 14

8.如图所示,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是.(把可能的图的序号都填上)

答案 ②③

二、解答题

9.正四棱台AC1的高是17 cm,两底面的边长分别是4 cm和16 cm,求这个棱台的侧棱长和斜高.解 如图所示,设棱台的两底面的中心分别是O1、O,B1C1和BC的中点分别是E1和E,连接O1O、E1E、O1B1、OB、O1E1、OE,则四边形OBB1O1和OEE1O1都是直角梯形.∵A1B1=4 cm,AB=16 cm,∴O1E1=2 cm,OE=8 cm,O1B1=22 cm,OB=82 cm,∴B1B2=O1O2+(OB-O1B1)2=361 cm2,2222E1E=O1O+(OE-O1E1)=325 cm,∴B1B=19 cm,E1E=513cm.218 答 这个棱台的侧棱长为19 cm,斜高为513cm.10.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解 圆台的轴截面如图所示,设圆台上下底面半径分别为x cm,3x cm.延长AA1交OO1的延长线于S,在Rt△SOA中,∠ASO=45°, 则∠SAO=45°,∴SO=AO=3x,∴OO1=2x,又S轴截面=

12(6x+2x)·2x=392,∴x=7.故圆台的高OO1=14(cm),母线长l=2O1O=142(cm),两底面半径分别为7 cm,21 cm.11.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?

解 如图所示,正棱锥S-ABCD中高OS=3,侧棱SA=SB=SC=SD=7,在Rt△SOA中,OA=SA2OS2=2,∴AC=4.∴AB=BC=CD=DA=22.作OE⊥AB于E,则E为AB中点.连接SE,则SE即为斜高,则SO⊥OE.在Rt△SOE中,∵OE=

12.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个 棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.解 这个几何体不是棱柱;在四边形ABB1A1中,在AA1上取点E,使AE=2;在BB1上取F使BF=2;连接C1E,EF,C1F,则过C1EF的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其棱长为2;截去的部分是一个四棱锥C1—EA1B1F.12BC=2,SO=3,∴SE=5,即侧面上的斜高为5.219

220

下载1.1空间几何体的结构说课稿word格式文档
下载1.1空间几何体的结构说课稿.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    空间几何体教学反思(精选五篇)

    空间几何体教学反思 篇一:空间几何体>教学反思今天受青岛一所学校校长之约,来青岛与这所学校的老师交流教学体会。晚上有点时间,正好宾馆可以上网,写写近期的一些教学感想。前面......

    空间几何体的直观图教案

    1.2.3 空间几何体的直观图教案 一、教学目标 1.知识与技能 (1)掌握斜二测画法画水平设置的平面图形的直观图、空间几何体的直观图。 (2)采用对比的方法了解在平行投影下画空间图......

    石膏几何体结构素描教案(精选合集)

    石膏体结构素描 教学目标:要求学生掌握物体的基本造型个性、理解物体的结构和基本透视。 重点:物体的形状个性、结构、透视 难点:物体的分面、透视 教学方法:观察法、对比法、练......

    1.1 空间几何体 教学设计 教案范文

    教学准备 1. 教学目标 明确什么叫视图和为什么要用三视图。 从课题题目的“三 视图”引入, 解释视图的含义,图解一个视图只能反映物体一个方位的道理。 三投影面体系是形成......

    1.1 空间几何体 教学设计 教案

    教学准备 1. 教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球......

    《空间几何体的三视图》教学设计

    《空间几何体的三视图》教学设计 内容分析: 三视图是空间几何体的一种表示形式,是立体几何的基础之一。学好三视图为学习直观图奠定基础,同时有利于培养学生空间想象能力,几何直......

    空间几何体的三视图教学反思

    学习目标 1. 知识与技能 a) 会画三视图。 2. 过程与方法 a) 学生动手作图,亲手体验,感受三视图表示空间几何体的意义。 3. 情感与价值 a) 联系生活实例,提高学生空间想象力; b)......

    1.1 空间几何体 教学设计 教案

    教学准备 1. 教学目标 1.知识与技能 (1)掌握画三视图的基本技能 (2)丰富学生的空间想象力 2.过程与方法 主要通过学生自己的亲身实践,动手作图,体会三视图的作用。 3.情感态度与价......