第一篇:四年级奥数第五讲_等差数列(二)_教师版
唯思达教育 小学四年级奥数一对一讲义 教师版
唯思达教育 小学四年级奥数一对一讲义 教师版
引申
1、一些同样粗细的圆木,像如图所示一样均匀地堆放在一起,已知最下面一层有70根。一共有多少根圆木? 答案:2485根。
2、用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按下图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边能放10根火柴棒,那么这个大的等边三角形中一共要放多少根火柴棒?
解:如果把图中最上端的一个三角形看做
唯思达教育 小学四年级奥数一对一讲义 教师版
引申
1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?
解:59+58+57+„+2+1=(59+1)×59÷2=1770(次)
2、有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了? 答: 一共有8把锁的钥匙搞乱了。
3、一辆公共汽车有66个座位,空车出发后,
第二篇:奥数等差数列练习题
等差数列
1.一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?
2.自1开始,每隔两个数写一个数来,得到数列:1,4,7,10,13,….,求出这个数列前100项只和?
3.影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位。最后一排有94个座位。问这个影剧院共有多少个座位?
4.小张看一本故事书,第一天看了25页,以后每天比前一天多看的页数相同,第25天看了97页刚好看完。问:这本书共有多少页?
5.已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,….,这个数列的第30项是哪个数字?到第25项止,这些数的和是多少?
植树问题
1.在一段公路的一旁栽95棵树,两头都栽,每两棵树之间相距5米,这段公路长多少米?
2.有三根木料,打算把每根锯成3段,每锯开一处,需要3分钟,全部锯完需多少时间?
3.一座楼房每上一层要走16个台阶,到小英家要走64个台阶。她家住在几楼?
第三篇:四年级奥数第四讲_等差数列(一)_教师版
小学四年级奥数一对一讲义 教师版
等差数列
(一)解题方法
若干个数排成一列,称为数列。数列中的每一个数称为一项,其中
小学四年级奥数一对一讲义 教师版
例题3 计算2+4+6+8+…+1990的和。
引申
1、计算1+2+3+4+…+53+54+55的和。
2、计算5+10+15+20+⋯ +190+195+200的和。
3、计算100+99+98+…+61+60的和
例题4 计算(1+3+5+…+l99l)-(2+4+6+…+1990)
引申
1、计算(1+3+5+7+…+2003)-(2+4+6+8+…+2002)
2、计算(2+4+6+…+100)-(1+3+5+…+99)
3、计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。
例题5 已知一列数:2,5,8,11,14,…,80,…,求80是这列数中
第四篇:四年级奥数
一个木器厂要生产一批课桌,原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌?
(1)电视机厂接到一批生产任务,计划每天生产90太,可以按期完成。实际每天多生产5台,结果提前一天完成任务。这批电视机共有多少台?
(2)小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前两天看完。这本故事书有多少页?
(3)修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天完成。一共修了多少米?
有两盒图钉,甲盒有72只,乙盒有48只,从甲盒中拿出多少只放入乙盒,才使两盒中的图钉树相等?
(1)有2袋面粉,第一袋面粉有24千克,第二代面粉有18千克。从第一袋中取出几千克放入第二袋,才能使两袋中的面粉质量相等?
(2)有两盒图钉,甲盒有72只,乙盒有48只,每次从甲盒中拿4只放入乙盒,拿几次后才能使两盒图钉数目相等?
(3)有两袋糖,一袋68粒,另一袋28粒。每次从多的一袋中拿出6粒放入少的一袋里,粒几次才使两袋糖的数目同样多?
第五篇:四年级奥数第十二讲——简单统筹规划(教师用)
远辉教育
远辉教育奥数班第十二讲
——简单统筹规划
主讲人:杨老师
学生:四年级
电话:62379828
一、学习要点:
最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益.因此,最优化问题成为现代应用数学的一个重要研究对象,它在生产、科学研究以及日常生活中都有广泛的应用.作为数学爱好者,接触一些简单的实际问题,了解一些优化的思想是十分有益的.
二、典例剖析:
例1 妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟.洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.小明估算了一下,完成这些工作要20分钟.为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?
分析 本题取自华罗庚教授1965年发表的《统筹方法平话》.烧水沏茶的情况是:开水要烧,开水壶要洗,茶壶茶杯要洗,茶叶要取.怎样安排工作程序最省时间呢?
办法甲:洗好开水壶,灌上凉水,放在火上,在等待水开的时候,洗茶杯,拿茶叶,等水开了,沏茶喝.
办法乙:先做好一切准备工作,洗开水壶,洗壶杯,拿茶叶,灌水烧水,坐等水开了沏茶喝.
办法丙:洗开水壶,灌上凉水,放在火上坐待水开,开了之后急急忙忙找茶叶,洗壶杯,沏茶喝.
谁都能一眼看出第一种办法好,因为后两种办法都“窝了工”.
开水壶不洗,不能烧开水,固为洗开水壶是烧开水的先决条件,没开水、没茶叶、不洗壶杯,我们不能沏茶,因而这些又是沏茶的先决条件.它们的相互关系可以用下图的箭头图来显示.
箭杆上的数字表示完成这一工作所需的时间,例如→表示从把水放在炉上到水开的时间是15分钟.从图上可以一眼看出,办法甲总共要16分钟,而办法乙、丙需20分钟.
洗壶杯、拿茶叶没有什么先后关系,而且是由同一个人来做,因此可以将上图合并成下图.
解 先洗开水壶用1分钟,接着烧开水用15分钟,在等待水开的过程中,同时洗壶杯、拿茶叶,水开了就沏茶,总共用了16分钟.又因为烧开水的15分钟不能减少,烧水前必须用1分钟洗开水壶,所以用16分钟是最少的.
说明:本题涉及到的统筹方法,是生产、建设、工程和企业管理中合理安排工作的一种科学方法,它对于进行合理调度、加快工作进展,提高工作效率,保证工作质量是十分有效的.
例2 用一只平底锅煎饼,每次能同时放两个饼.如果煎1个饼需要2分钟(假定正、反面各需1分钟),问煎1993个饼至少需要几分钟?
分析 由于1993数目较大,直接入手不容易.我们不妨先从较小的数目来进行探索规律.
如果只煎1个饼,显然需要2分钟;
如果煎2个饼,仍然需要2分钟;
远辉教育
如果煎3个饼,初学者看来认为至少需要4分钟:因为先煎2个饼要2分钟;再单独煎第3个饼,又需要2分,所以一共需要4分钟.但是,这不是最佳方案.最优方法应该是:
首先煎第1号、第2号饼的正面用1分钟;
其次煎第1号饼的反面及第3号饼的正面又用1分钟;
最后煎第2号、第3号饼的反面再用1分钟;这样总共只用3分钟就煎好了3个饼. 解:如果煎1993个饼,最优方案应该是:
煎第1、2、3号饼用“分析”中的方法只需要3分钟;煎后面1990个饼时,每两个饼需要2分钟,分1990÷2=995(次)煎完,共需要2×995=1990(分钟);这样总共需要3+1990=1993(分钟).
说明:通过本例可以看出,掌握优化的思想,合理统筹安排操作程序,就能够节省时间,提高效率. 例3 5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头,试问怎样适当安排他们的打水顺序,才能使每个人排队和打水时间的总和最小?并求出最小值.
分析 5个人排队一共有5×4×3×2×1=120种顺序,把所有情形的时间总和都计算出来,就太繁琐了.凭直觉,应该把打水时间少的人排在前面所费的总时间会省些.考虑用“逐步调整”法来严格求解. 解:首先证明要使所费总时间最省,应该把打水时间需1分钟的人排在第一位置.
假如第一位置的人打水时间要a分钟(其中2≤a≤5),而打水需1分钟的人排在第b位(其中2≤b≤5).我们将这两个人位置交换,其他三人位置不变动.这样调整以后第b位后面的人每人排队打水所费的时间与调整前相同,并且前b个人每人打水所费时间也未受影响,但是第二位至第b位的人排队等候的时间都减少了(a-1)分钟,这说明调整后五个人排队和打水时间的总和减少了.换言之,把打水需1分钟的人排在第一位置所费总时间最省.
其次,根据同样道理,再将打水需2分钟的人调整到第二位置;将打水需3、4、5分钟的人逐次调整到第三、四、五位.所以将五人按照打水所需时间由少到多的顺序排队,所费时间最省.这样得出5人排队和打水时间总和的最小值是
1×5+2×4+3×3+4×2+5×1=35(分钟).
说明:本题涉及到排序不等式,有兴趣的读者可参阅高年级的数学奥林匹克教材.排队提水的问题,在其他一些场合也是会遇到的.例如,有一台机床要加工n个工件,每个工件需要的加工时间不一样,问应该按照什么次序加工,才能使总的等待时间最短.
例4 有157吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升与5公升.问如何选派车辆才能使运输耗油量最少?这时共需用油多少公升?
解:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升).为了节省汽油应尽量选派大卡车运货,又由于
157=5×31+2,因此,最优调运方案是:选派31车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油
10×31+5×1=315(公升)
说明:本题是1960年上海市数学竞赛试题.上述解法是最朴素的优化思想——选派每吨耗油量较少的卡车.下面用代数的知识来解题:
设选派大卡车a车次,小卡车b车次,依题意: 5a+2b=157,即10a=314-4b. 于是总耗油量为:
W=10a+5b=314=4b+5b=314+b.
显然,当b越小时,W也越小.
又由5a+2b=157易知,b最小值是1,故W的最小值是314+1=315(公升).若取b=0,则需派32车次大卡车,耗油量则需320公升.
例5 有十个村,坐落在从县城出发的一条公路上(如下页图,距离单位是公里),要安装水管,从县城送自来水供给各村,可以用粗细两种水管.粗管足够供应所有各村用水,细管只能供一个村用水.粗管每公
远辉教育
里要用8000元,细管每公里要用2000元.把粗管和细管适当搭配、互相连接,可以降低工程的总费用.按你认为最节约的办法,费用应是多少?
分析 由题意可知,粗管每公里的费用恰好是细管每公里费用的4倍.因此,如果在同一段路上要安装4根以上的细管,就应该用一根粗管来代替,便可降低工程的总费用.
解:假设从县城到每个村子都各接一根细管(如上图),那么在BA1、BA2、BA3、BA4、BA5、BA6之间各有10、9、8、7、6、5根细管,应该把B与A6之间都换装粗管,工程的总费用将最低,这时的总费用是:
a=8000×(30+5+2+4+2+3)+2000×(2×4+2×3+2×2+5)
=414000(元).
说明:容易验证,从县城B起铺设粗管到A6或A7或者A6A7之间任何一个地点都是最节约的办法,总费用仍是414000元.下面详细论证其他安装方案的总费用都大于a.
当粗管从县城B铺设到超过A7向A8移动一段路程d(0<d≤2)公里时,粗管费用增加8000d(元),而细管费用仅减少
2000d×3=6000d(元).
这时总费用比 a多2000d(元).
当粗管从县城B铺设到超过A8向A9移动一段路程d(0<d≤2)公里时,粗管费用增加
8000×(2+d)=16000+8000d(元),而细管增费用仅减少
2000×(2×3+2d)=12000+4000d(元).
这时总费用比a多4000+4000d(元).
当粗管从县城B铺设到超过A9向A10移动一段路程d(0<d≤5)公里时,粗管费用增加
8000×(2+2+d)=32000+8000d(元).
而细管费用仅减少
2000×(2×3+2×2+d)=20000+2000d(元).
这时总费用比a多12000+6000d(元).
综上所述,从县城B铺设粗管到超过A7点以东的任何地点的安装总费用都大于a.
类似地,可以验证从县城铺设粗管到A6点以西的任何地点的总费用也都大于a. 例6 有1993名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小? 分析 由于1993数目较大,不易解决.我们先从人数较小的情况入手.
当只有2个人时,设2人宣传岗位分别为A1和A2(如上图),显然集合地点选在A1点或A2点或者A1A2之间的任何一个地点都可以.因为由A1、A2出发的人走过的路程总和都等于A1A2.
当有3个人时,则集合地点应该选在A2点(如右图).因为若集合地点选在A1A2之间的B点,那时3个人所走的路程总和是
A1B+A2B+A3B=(A1B+A3B)+A2B=A1A3+A2B;
若集合地点选在A2A3之间的C点,那时3个人所走的路程总和是:
A1C+A2C+A3C=(A1C+A3C)+A2C=A1A3+A2C;
而集合地点选在A2点时,3个人所走路程总和仅是A1A3.当然A1A3比A1A3+A2B及A1A3+A2C都小.
远辉教育
当有4个人时,由于集合地点无论选在A1A4之间的任何位置,对A1、A4岗位上的人来说,这2人走的路程和都是A1A4(如下图).因此,集合地点的选取只影响A2、A3岗位上的人所走的路程,这就是说,问题转化为“2个人站在A2和A3岗位的情形”.根据上面已讨论的结论可知,集合地点应选在A2或A3或者A2A3之间任何地点.
当有5个人时,类似地可把问题转化为“ 3个人站在A2、A3、A4岗位的情形”(如下图)根据已讨论的结论可知,集合地点应选在A3点.
依此递推下去,我们就得到一个规律:
当有偶数(2n)个人时,集合地点应选在中间一段 AnAn+1之间的任何地点(包括An和An+1点);
当有奇数(2n+1)个人时,集合地点应选在正中间岗位An+1点.
本题有1993=2×996+1(奇数)个人,因此集合地点应选在从某一端数起第997个岗位处.
说明:本题的解题思路值得掌握,那就是先从简单的较少的人数入手,通过逐步递推,探索一般规律,从而解决某些数字较大的问题.
模拟测试
1.妈妈杀好鱼后,让小明帮助烧鱼.他洗鱼、切鱼、切姜片葱花、洗锅煎烧,各道工序共花了17分钟(如下图),请你设计一个顺序,使花费的时间最少.
2.用一只平底锅煎饼,每次能同时放两个饼.如果煎一个饼需要4分钟(假定正、反面各需2分钟),问煎m个饼至少需要几分钟?
3.小明、小华、小强同时去卫生室找张大夫治病.小明打针要5分钟.小华换纱布要3分钟,小强点眼药水要1分钟.问张大夫如何安排治病次序,才能使他们耽误上课的时间总和最少?并求出这个时间.
4.赵师傅要加工某项工程急需的5个零件,如果加工零件A、B、C、D、E所需时间分别是5分钟、3分钟、4分钟、7分钟、6分钟.问应该按照什么次序加工,使工程各部件组装所耽误的时间总和最少?这个时间是多少?
5.某水池可以用甲、乙两个水管注水,单放甲管需12小时注满,单放乙管需24小时注满.若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲、乙两管合放最少需要多少小时?
6.山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈,货车到了某一车间,就要有装卸工装上或卸下货物.当然,装卸工可以固定在车间等车(各车间所需装卸工人数如图所示);也可以坐在货车到各车间去;也可以一部分装卸工固定在车间,另一部分坐车.问怎样安排才能使装卸工的总人数最少?最少需多少名工人?
远辉教育
答案:
1.12分钟.
2.若m=1时,至少需要4分;
若m≥2时,至少需要2m分钟.
3.按小强、小华、小明的顺序安排,耽误上课的时间总和为:
1×3+3×2+5=14(分钟).
4.按B、C、A、E、D的顺序加工,耽误时间总和最少为:
3×5+4×4+5×3+6×2+7=65(分钟).
6.46×4+4+2+6+11=207(人).
远辉教育
附加:速算与巧算
(1)678(354322)
(4)29041327173
(7)23599
(10)222222999999
(11)399999399993999399393
(12)20191817„4321
(13)8888125
(14)34534515015
(2)283147171653
(3)384(37184)
(5)653197
(6)12517125
(8)(1300520)13
(9)672118218579