第一篇:智能仪器点题知识点
智能仪器的组成:由硬件和软件两大部分组成。硬件部分主要包括主机电路、模拟量输入/输出通道、人机联系部件与接口电路、标准通信接口电路等部分。
智能仪器的特点:⒈智能仪器功能多样化;⒉智能仪器系统的集成化、模块化;⒊智能仪器构成的柔性化;⒋智能仪器的网络化;⒌智能仪器的可视化
数据采集系统的基本组成框图:传感器→信号调理电路→采样保持器S/H→A/D转换器→微机系统
连续信号频率:ωs≥2ωm wm为连续信号所含最高频率分量的角频率。
为什么样用采样/保持?模拟信号进行A/D转换时,从启动转换到转换结束输出数字量要一定的转换时间,在这个转换时间内,模拟信号要基本保持不变,否则转换精度没有保证,特别当输入信号频率较高时,会造成很大的转换误差,要防止这种误差的产生,必须在A/D转换开始时将输入信号的电平保持住而在A/D转换结束后又能跟踪输入信号的变化,能完成这种功能的器件叫做采样/保持器,其在保持阶段相当于一个“模拟信号”存储器。
采样/保持器的作用:是在规定的时刻接收输入电压并在输出端保持该电压值,直到下次采样为止。
模拟量输出信号:直流电流信号(远距离传送:抗干扰能力强,信号线电阻不会导致信号的损失);直流电压信号(传输给多个其他仪器:多用于控制显示等场所)
模拟量输出通道的组成:(1)D/A转换器(2)多路模拟开关(3)采样/保持器;D/A转换器主要技术指标:①分辨率;②稳定时间;③输出电平;④ 输入编码评价智能仪器质量:准确度、可靠性和抗干扰性;
键盘接口设计的主要任务:判断是否有键被按下;识别按键;消除抖动;处理同时按键;根据按下键的内容执行相应的操作。
非编码式键盘接口:独立式连接的非编码式键盘;矩阵式链接的非编码式键盘(扫描方法:定时扫描法,中断扫描法)串行接口 GP-IB接口的24线包括:16跟信号线(8条双向数据线、3条数据传送控制线、5条接口控制线)和8条逻辑地线及屏蔽线
控制器的操作过程:①控制器检测SRQ线,当其为低电平时,通过查询确定请求服务的仪表②控制器的设置ATN为有效(低电平)③控制器发送X0100001,确定地址为1的仪表为听者④控制器发送X1000010,确定地址为2的仪表为讲者⑤控制器设置ATN为有效高电平⑥讲者与听者交换数据⑦控制器发出X0111111关闭听者⑧控制器发出XL011111关闭讲者
串行通信定义:指数据按位依次传输。串行通信中要求发送和接受双方必须遵守统一的规定,这样才能保证通信正常进行。
RS-232C是采用负逻辑来定义逻辑电平的。驱动的输出电平为逻辑“0”:+5V~+15V,逻辑“1”:-15V~-5V;接收器的输入检测电平为:逻辑“0”:>+3V,逻辑“1”:<-3VMAX202芯片只需+5V电源供电,可提供TS-232C电平的发送器和接收器各两个
RS-485串行总线标准的特点:①某一设备与其他设备的连接只需两根导线②不能实行全双工通信USB2.0速率:120~240MB/S
USB特点:使用方便;速度快;接口灵活;独立供电;支持多媒体USB的数据流传输方式:等时传输方式;中断传输方式;控制传输方式;批传输方式测量算法的定义:指直接与测量技术有关的算法重要算法问题:测量结果的非数值处理算法、测量结果的数值处理算法、两层自动转换与标度变换算法和多传感器的信息融合算法排序是将一组“无序”的记录序列调整为“有序”的记录序列的过程常用的数字滤波法:限幅滤波;中位值滤波;算术平均滤波;递推平均滤波;加权递推平均滤波;一阶惯性滤波;复合滤波法
修正系统误差:利用误差模型修正;通过曲线拟合修正;校准数据表修正法智能仪器的 主要功能:按照被测控对象的要求对测控对象进行测量后,根据一定的算法对其进行控制。测量的两项基本指标:准确度和可靠性为什么要进行误差的校准和自检?对仪器的误差进行校准可保证仪器具有规定的准确度,而对仪器的自检可及时发现错误,使仪器可靠工作。仪器自检的方式:开机自检;周期性自检;键控自检;连续监控;
故障检测与诊断的目的:(1)能及时、正确的对各种异常状态或故障状态做出诊断,预防或消除故障,提高智能仪器运行的可靠性,安全性和有效性;(2)保证智能仪器发挥最大的设计能力,制定合理的检测维修制度;(3)通过检测监视、故障分析。性能评估等为智能仪器的结构修改、优化设计、合理制造及生产过程提供数据和信息。
故障检测的任务:了解和掌握系统的运行状态,包括采用各种检测、测量、监视、分析和判别方法,结合系统的历史和现状,考虑环境因素,对设备运行状态做出报警,以便运行人员及时加以处理,并为设备的故障分析、性能评估、合理使用和安全工作提供信息和准备基础数据。
故障诊断的任务:根据状态检测所获得的信息,结合已知的结构特性和参数及环境条件,以及该设备的运行历史,对设备可能要发生的或已发生的故障进行预报和分析、判断,确定故障的性质、类别、程度、原因、部位,指出故障发生和发展的趋势及其后果,提出控制故障继续发展和消除故障的调整、维修和治理对策,并加以实施,最终使设备复原到正常状态。
串模干扰定义:由外界条件引起的、叠加在被测电压上的干扰信号,并通过测量仪器的输入端与被测量信号仪器进入测量仪器而引起参量误差。
抑制串模干扰的措施:(1)采用滤波器(2)选择器件(3)对信号进行预处理(4)电磁屏蔽
共模干扰的定义:同时叠加在两条被测信号线上的外界干扰信号,由于被测信号的地和仪器地之间不等点位,两个“地 ”之间的电位差ECM就成为工模干扰源。
抑制共模干扰:利用双端输入的运算放大器作为输入通道的前置放大器抑制工模干扰;利用隔离放大器、变压器或光电耦合器将信号源和仪器隔离,使两个地之间没有直接的导通回路;利用浮地输入双层屏蔽放大器。
第二篇:智能仪器学习心得
《智能仪器》学习心得
首先,非常荣幸《智能仪器》这门课程由我们的周老师授课。现在我将学习这门课程的心得、所获得的知识介绍如下。
随着微型计算机及微电子技术在测试领域中的广泛应用,仪器表在测量原理、准确度、灵敏度、可靠性、多种功能及自动化水平等方面都发生了巨大的变化,逐步形成了完全突破传统概念的新一代仪器——智能仪器。在信息技术的高速发展和人工智能应用的推动下,智能仪器必将有更大的进展。测试仪器的智能化已是现代仪器发展的主流方向。因此,学习智能仪器的工作原理、掌握新技术和设计方法无疑是十分重要的。
了解教材的特点对我们学习的课程是相当关键的,所以我了解到本教材的特点是:
1、结构合理,章节安排、重点与难点分布符合教学要求,内容系统、新颖、翔实,可教性和可实践性强;
2、紧密结合科研实践,融入了DSP、FPGA/CPLD、∑-△型24位A/D、USB接口、触摸屏、条图显示、非线性决策滤波算法、智能传感器、网络仪器等当今智能仪器的先进技术;
3、较强了软件设计方法、课测试性实践、可靠性设计;
4、有利于授课教师灵活选材,可以选取不同章节,构成深度和学时有区别的课程;
5、通过附录介绍了实验设备和实验项目,形成了完整的教学方案。
下面我就我们学到的知识做一个简单的概况。
本书第一章概述,简要介绍了仪器仪表的分类、重要性及智能仪器的发展概况,重点论述了智能仪器的概念、智能化层次、基本结构
与特点,综述了推动智能仪器的发展的七方面主要介绍和智能仪器微型化技术。
第二章数据采集技术,介绍了集中式和分布式采集系统结构、模拟信号调理,重点论述了普通型和∑-△型A/D转换器原理、接口技术,通过实例深入讨论了采集系统设计、误差分析等问题。智能仪器的数据采集系统简称DAS,是指将温度、压力、流量、位移等模拟量进行采集、量化转换成数字量后,以便有计算机进行存储、处理、显示或打印的装置。传统的A/D转换技术在实现极高精度的A/D转换时,在性能、代价等方面搜到了极限性的挑战,而且由于难以与数字电路系统实现单片集成,因而不适应VL-SI技术的发展。近年来∑-△型A/D转换器以其分辨率高、线性度好、成本低等特点得到越来越广泛的应用,特别是在既有模拟又有数字的混合信号处理场合更是如此。过采样∑-△型A/D转换器由于采用了过采样技术和∑-△调制技术,增加了系统总数字的电路的比例,减少了模拟电路的比例,并且易于与数字系统实现单片集成,因而能够以较低成本实现高精度的A/D转换器,适应了VLSI技术发展的要求。过采样技术使得量化噪音功率平均分配到更宽的频带范围中,从而减低了基带内的量化噪声功率。∑-△型A/D转换器一很低的采样分辨率和很高的才艺速率将模拟信号数字化,通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率,然后对A/D转换器输出进行采样抽取处理以降低有效采样速率。
第三章人机对话与数据通信,既介绍键盘、LCD显示、RS-232C
标准串行总线通信等基本信息,又重点增加了条图显示、触摸屏、USB通用串行总线、PTR系列模块和基于移动通信网的无线数据传输等内容。
测量精度和可靠性是仪器的重要指标。所以第四章,主要介绍了基本数据的处理算法,重点讲述克服随机误差的数字滤波算法和消除系统误差的几种校正算法,简要介绍了标度变换。引入数据处理算法后,使许多原来考硬件电路难以实现的信号处理问题得以解决,从而克服和弥补了包括传感器在内的各个测量环节中硬件本身的缺陷或弱点,提高了仪器的综合性能。
高级智能仪器是应用了人工智能的力量、方法和技术,具有拟人智能特性或功能的一起。为了实现这种特性或功能,智能仪器中一般都使用嵌入微处理器的片上系统芯片、数字信号处理及专用信号处理电路,一起内部带有处理能力很强的智能软件。仪器仪表一不再是简单是硬件实体,而是硬件、软件相结合,软件决定仪器智能高低的新型仪器。软件设计成为智能仪器设计中工作量大任务最繁重、最复杂的工作。因此,只有按照软件工程的思想,掌握软件的设计方法,才能够高效率、高质量地完成智能仪器软件设计的任务。第五章软件设计,在介绍软件工程方法的基础上,重点论述基于裸机和嵌入式操作系统的软件设计方法,对软件测试问题作了讨论,新增加软件文档、监控程序设计等内容。
可靠性和抗干扰能力是评价仪器系统质量优劣的重要技术指标。第六章可靠性设计与干扰技术,介绍了可靠性基本的知识,重点论述
硬件和软件可靠性设计方法与技术,对一直电磁干扰的主要技术措施进行了较详细的分析。
第七章可测性设计,介绍了可测试性的基本知识、测试性通用设计原则和机内测试技术——BIT,结合RAM测试、A/D与D/A测试实例,讨论了可测试性设计方法。可测试性是系统和设备的一种便于测试和诊断的重要设计特性,对各种复杂系统尤其是对电子系统和设备的维修性、可靠性和可用性有很大影响。可测试性设计要求在设计研制过程中使系统具有自检测和为诊断提高方便的设计特性。具有良好的可测试性的系统和设备,可用及时、快速、准确地检测与隔离故障,提高执行任务的可靠性与安全性,缩短故障检测与看来时间,进而减少维修时间,提高系统可用性,降低系统的使用维护费用。
第八章智能仪器设计实例,论述了智能仪器的设计原则和研制步骤,比较完整地给出了基于单片机和DSP研制的两种仪器实例。
第九章智能仪器的新发展,简要介绍了虚拟仪器的特点、体系结构、硬件和软件及应用,从基于Web的虚拟仪器、嵌入internet的网络话智能传感器和IEEE1451标准等方面讨论了网络话仪器。
以上是我对我们课程每一章学习到的知识的一些概况。我也认识到只是在我们的课堂要学好一门课程是不够的,要把知识学通、学精,还是需要我们花大量的精力、时间继续努力的。所以,我会努力的!
第三篇:智能仪器实习报告
智能仪器实习报告
课题名称 虚拟数字电压表的设计 院(系)电气工程与控制科学学院专 业 测控技术与仪器 姓 名 _____________ 学 号 _____________ 起止日期 2017/5/10-2017/5/18 指导教师 蒋 书 波
2017 年 5 月 18 日
一、实训要求
在LabVIEW平台下,掌握虚拟数字电压表的前面板设计和框图程序设计。了解被测信号的种类,保证电压测量的精确度。
二、实训目的
1、数字电压表的功能。
2、虚拟数字电压表的前面板设计。
3、虚拟数字电压表的框图程序设计。
4、软件调试及误差分析。
5、电压测量值的存储。
三、实验原理
电压是电路中常用的电信号,通过电压测量,利用基本公式可以导出其他的参数。因此,电压测量是其他许多电参数和非电参数量的基础。测量电压相当普及的一种测量仪表就是电压表,但常用的是模拟电压表。模拟电压表根据检波方式的不同。分为峰值电压表、均值电压表和平均值电压表,它们都各自做成独立的仪表。这样,使用模拟电压表进行交流电压测量时,必须根据测量要求选择仪表。另外,多数电压表的表头是按正弦交流有效值刻度的,而测量非正弦波时,必须经过换算才能得到正确的测量结果,从而给实际工作带来不便。
采用虚拟电压表,可将表征交流电压特征的峰值、平均值和有效值集中显示在一块面板上,测量时可根据波形在面板上选择仪表,用户仅通过面板指示值就能对测量结果进行分析比较,大大简化了测量步骤
四、实验内容及说明
1、前面板的界面友好,操作方便。设计一个数据显示窗口,一个交流/直流选择按钮,一个交流电压测量多选框(PEAK/VIRTUAL VALUE/AVERAGE),一个直流电压输入框,一个启动/停止测量按钮,一个退出系统按钮。
2、显示窗口由三个部分构成,第一个为显示电压值的,第二个是显示AC或DC的,第三个为显示V或mV的。
3、交流/直流选择按钮用于选择测量输入信号的交流成分或者直流成分。
4、交流电压测量多选框在(3)中交流选择情况下可用,分别对应于电压的有效值、峰值和平均值测量,以满足不同场合下测量的需求。
5、直流电压输入值控制器在(3)中直流选择情况下可用,可在其内输入任意直流电压值,单位为V。
6、程序框图由数据采集、数据处理、数据显示和数据存储四个部分组成。作为虚拟数字电压表来说,其交流电压信号由Express VI 仿真信号生成。在数据处理中用到交、直流提取;有效值提取;峰值提取;平均值提取。
7、数据显示主要用于显示数值、AC/DC、V/mV,后面两个布尔型指示器根据测量的不同、数值范围的变化而发生变化。主程序包括一个while循环结构(用于控制启动或者停止测量)和两个case选择结构(一个是进行峰值测量、有效值测量还是平均值测量,另一个是对测量结果是以V还是mV来表示)。
8、数据存储,以文本或数据记录形式,将电压测量日期、测量时间、测量值、测量种类(交流/直流)、交流电压测量选择(若是直流电压,此项为0)、电压值的单位等有效信息,存储到文件中。且此文件用文本处理软件可方便浏览。
9、软件调试中主要由以下几种调试技术:
(1)找出错误:利用查看错误清单,点击任何一个所列错误,再选用Find功能,则出错的对象或窗口就会变成高亮。
(2)设置执行程序高亮:这种执行方式一般用于单步模式,来跟踪框图中的数据流动。
(3)VI程序的单步执行:设置单步执行模式,将要执行的节点就会闪烁,指示将被执行。在次点击单步按钮,程序将会变成连续方式。
(4)探针:利用工具模板中的探针工具,放置于某根连线上,用来指示当前数据上流动的数值。
(5)断点:工具模板中的断点工具,用探针或者单步方式查看数据,点击希望设置或者清除断点的地方。
10、对于虚拟数字电压表来说,其误差分析部分就可以省略了。而如果为实际数字电压表的设计,需要多次重复测量某一电压,考虑重复性和精确性。
五、设计思路
1、前面板的设计
前面板模拟真实电压表的前面板,用于设置输入数值和观察输出量。由于虚拟面板直接面向用户,是虚拟电压表控制软件的核心。设计这部分时,主要考虑界面美观、操作简洁,用户能通过面板上的各种按钮、开关等控件来控制虚拟电压表进行测量工作。根据传统电压表面板控件的功能,利用LabVIEW中的控制模板,分别在设计面板上放入模拟实际电压表控件的数据显示窗口,一个交流/直流选择按钮,一个交流电压测量多选框(PEAK/VIRTUAL VALUE/AVERAGE),一个直流电压输入框,一个启动/停止测量按钮,一个退出系统按钮
2、程序框图的设计
(1)、数据采集部分
整个电压表分为交流和直流两个部分,为了方便交直流的选择,此处采用一个case选择结构作为交直流的切换。其中,直流电压的输入采用了一个double型的数值输入控件,交流电压的输入采用了添加均匀噪声的正弦仿真信号,如图:
(2)、数据处理部分
数据处理过程中,在交流部分再次使用case选择结构来选择交流电压峰值、平均值和有效值的输出,此外还通过电压值与数值1的比较来选择电压的单位为V还是Mv。
(3)、数据显示部分
由于根据实验要求输出电压值,在数据显示部分只需要输出电压数值,提供单位V或者mV以及交流直流的显示,比较简单。
(4)、数据存储部分
这部分首先创建文件,之后设计了一个连接字符串,将需要存储的电压值,电压单位以及交直流说明连接起来,写入文本。为了使存储的数据简单易懂,添加了存储数据产生时间;为了使产生的文本美观,使用了行结束符、制表符等来换行换列。
六、实训感悟
通过这次实训,我收获了很多,一方面学习到了许多以前没学过的专业知识与知识的应用,另一方面还提高了自己动手做项目的能力。本次实训,是对我能力的进一步锻炼,也是一种考验。从中获得的诸多收获,也是很可贵的,是非常有意义的。在实训中我学到了许多新的知识。是一个让我把书本上的理论知识运用于实践中的好机会,原来,学的时候感叹学的内容太难懂,现在想来,有些其实并不难,关键在于理解。在这次实训中还锻炼了我其他方面的能力,提高了我的综合素质。首先,它锻炼了我做项目的能力,提高了独立思考问题、自己动手操作的能力,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等。
实训过程中,我同时也深深的感觉到自己所学的知识的肤浅和在实践运用中知识的匮乏,刚开始的一段时间里,对一些东西无从下手,茫然不知所措,这让我感到非常的难过。在学校总以为自己学的不错,一旦接触到实践,才发现自己知道的是多么少,这才真正领悟到学无止境的含义。平时在学习中不能够透彻理解的知识,通过动手,会有更好的认知。我意识到自己的操作能力的不足,在理论上还存在很多缺陷。所以在以后的学习生活中,我会更加努力地加强理论联系实践的学习,在努力学好专业知识的同时努力加强自己的专业技能方面的能力,使自己的知识在实践中不断增长,在实践中锻炼自己,培养自己各方面的能力,不断提高自己的能力。
第四篇:仪器分析知识点归纳
红外光谱法
1.物质吸收红外光的必要条件 ①分子的振动必须能与红外辐射产生耦合作用,即分子振动时必须伴随瞬时偶极矩的变化。②只有当照射分子的红外辐射光子的能量与分子振动能级跃迁所需的能量相等,才能实现振动与辐射的耦合,从而使分子吸收红外辐射能量产生振动能级的跃迁。即 △Ev=Ev2-Ev1=hυ。
2.红外光谱法的缺点:①色散型仪器的分辨率低,灵敏度低,不适于弱辐射的研究。② 不能用于水溶液及含水物质的分析。③对某些物质不适用:如振动时无偶极矩变化的物质;左右旋光物质的IR谱相同;长链正烷烃类的IR谱近似等。复杂化合物的光谱极复杂,难以作出准确的结构判断,往往需与其它方法配合。
3.红外光谱的吸收峰:①泛频峰:倍频、合(组)频峰。②倍频峰:由基态(v=0)跃迁到v=2,3,4,„激发态产生的。③合频峰:在两个以上基频峰波数之和或差处出现的吸收峰。
4.简正振动:把多原子分子的振动分解成许多简单的基本振动。简正振动的特点:① 振动的运动状态可以用空间自由度(空间三维坐标)来表示,体系中的每一质点(原子)都具有三个空间自由度。② 分子的质心在振动过程中保持不变,分子的整体不转动。③ 每个原子都在其平衡位置上作简谐振动,其振动频率及位相都相同,即每个原子都在同一瞬间通过其平衡位置,又在同一时间到达最大的振动位移。④ 分子中任何一个复杂振动都可以看成这些简正振动的线性组合。
5.影响吸收峰强度的因素① 振动能级的跃迁几率和振动过程中偶极距的变化是影响红外吸收峰强度的两个主要因素,基频吸收带一般较强,而倍频吸收带较弱。② 基频振动过程中偶极矩的变化越大,其对应的峰强度也越大;振动的对称性越高(即化学键两端连接的原子的电负性相差越小),振动中分子偶极矩变化越小,谱带强度也就越弱。因而,一般来说极性较强的基团振动吸收强度较大,极性较弱的基团振动吸收较弱。③ 一般来说,反对称伸缩振动的强度大于对称伸缩振动的强度,伸缩振动的强度大于变形振动的强度。6.傅里叶变换红外分光光度计的特点(1)多路优点 导致其扫描速度较色散型快数百倍,有利于光谱快速记录,使FI-IR特别适用于与GC、HPLC联用,也可用来观测瞬时反应。(2)辐射通量大 导致高灵敏度,检出限达10-9~10-12g;特别适用于测量弱信号光谱,且对研究催化剂表面的化学吸附物具有很大的潜力。(3)波数准确度高
波数精度可达0.01cm-1。(4)杂散光低 在整个光谱范围内杂散光低于0.3%。(5)可研究很宽的光谱范围 1000~10cm-1,这对测定无机化合物和金属有机化合物十分有利。(6)具有高的分辨能力 一般达0.1cm-1,甚至可达0.05cm-1,可以研究因振动和转动吸收带重叠而导致的气体混合物的复杂光谱。(7)FT-IR适用于微少试样研究。紫外可见分光光度法 1.朗伯比耳定律的局限性(1)比耳定律本身的局限性:Ⅰ所有的吸光质点之间不发生相互作用.Ⅱ比耳定律只适用于稀溶液(<0.01 mol/L).(2)化学偏离:主要是指分析物质涉及到任何平衡反应时,如分析物质与溶剂发生缔合、离解及溶剂化反应,产生的生成物与被分析物质具有不同的吸收光谱,出现化学偏离。(3)非均相体系偏离:溶液必须是均相体系。胶体、乳胶、悬浮物、沉淀等非均相体系产生的光散射(4)仪器偏离:生色团:广义地说,分子中可以吸收光子而产生电子跃迁的原子基团;严格地说,不饱和吸收中心。助色团:带有非键电子对的基团(如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等),它们本身不能吸收大于200 nm的光,但是当它们与生色团相连时,会使其吸收带的最大吸收波长λmax发生移动,并增加其吸收强度。红移和紫移:在有机化合物中,常常因取代基的变更或溶剂的改变,使其吸收带的最大吸收波长λmax发生移动。向长波方向移动称为红移;向短波方向移动称为紫移。增色效应和减色效应:由于化合物的结构发生某些变化或外界因素的影响。使化合物的吸收强度增大的现象,叫增色效应;使吸收强度减小的现象,叫做减色效应。
2.有机化合物的紫外可见光谱 A.饱和烃及其取代衍生物 饱和烃分子中只含σ键,只有σ→σ*跃迁
饱和烃的取代衍生物的杂原子上存在n电子,可以产生n→σ*和σ→σ*跃迁。B.不饱和烃及共轭烯烃 不饱和烃类分子中含有σ和π键,可以产生σ→σ*和π→π*跃迁。C.羰基化合物 羰基化合物含有>C=O基团,可以产生n→σ*,n→π*和π→π*三个吸收带。
3.溶剂对电子光谱的影响 π→π*跃迁谱带红移;n→π*跃迁谱带紫移
在选择测定电子吸收光谱曲线的溶剂时,注意:①尽量选用低极性溶剂;②能很好地溶解被测物,并且形成的溶液具有良好的化学和光化学稳定性;③溶剂在样品的吸收光谱区无明显吸收。
4.光电倍增管优点:高灵敏度;响应快;适于弱光测定,甚至对单一光子均可响应。缺点:热发射强,因此暗电流大,需冷却(-30oC)。不得置于强光(如日光)下,否则会永久损坏 PMT。硅二极管 特点:灵敏度介于真空管和倍增管之间
5.分光光度计的类型 ①单光束分光光度计优点:仪器简便、操作简单、成本低 缺点:要求光源和检测器有很高的稳定性,定量分析结果误差较大 ②双光束分光光度计 ③双波长分光光度计 特点:可以测定高浓度试样,多组分混合试样以及浑浊试样。④多道分光光度计
6.分析条件的选择 A.仪器测量条件 合适的吸光度范围(调节待测物浓度、选用适当厚度的吸收池等)。入射光波长和狭缝宽度。B.反应条件的选择 显色剂用量;溶液酸度的选择;显色反应时间、温度等
C.参比溶液的选择 溶剂参比;试剂参比;试样参比;平行操作溶液参比 D.干扰及消除方法 控制酸度;掩蔽剂;选择适当分析波长;分离。
色谱分析调整保留时间t’R = tRVM。相对保留值2,1 = t’R2/t’R分离因子 = t’R2/t’R1
保留因子k = ns / nm
峰面积的测量方法
峰高乘半峰宽法 A = 1.065 h Y1/2
峰高乘平均峰宽法 A = h(Y0.15+Y0.85)/2
氢火焰离子化检测器是利用氢火焰作为电离源,使有机物电离,产生微电流而响应的质量型检测器,简称氢焰检测器。最常用的检测器之一。特点:1.几乎所有的有机物均有响应2.对烃类灵敏度高且与碳原子数成正比(10-12 g/s)3.线性范围宽、结构较简单、操作方便4.死体积几乎为零,可直接与毛细管柱相联5.需要三种气源及流速控制系统。破坏性(对样品)
电子俘获检测器(ECD)是以63Ni或氚作放射源的浓度型离子化检测器。特点:1.灵敏度高:气相色谱检测器中灵敏度最高的一种(10-14 g/mL)2.选择性高:只对具有电负性的化合物有响应(含卤素、硫、磷、氮、氧的物质)3.应用广泛:仅次于 TCD 和 FID
4.线性范围较小:102--104
火焰光度检测器(FPD)又称硫磷检测器。它是利用富氢火焰使含硫、磷杂原子的有机物分解、发光建立起来的检测器。特点:1.对含硫、磷的化合物有高灵敏度和高选择性。2.对硫为非线性响应。3.也可用于有机金属化合物和其它杂原子化合物。
热离子化检测器(氮磷检测器)是一种电离型检测器(质量型)。特点:对氮磷化合物灵敏度高,选择性好。专用于痕量氮磷化合物的检测。
气相色谱与质谱联用(GC-MS)质谱法是灵敏度高、定性能力强的分析方法;色谱法是分离效率高、定量分析方便的分析方法。两者联用的优势:GC是MS的理想“进样器”。(试样经色谱分离后,以纯物质进入质谱);MS是GC的理想“检测器”。(不仅灵敏度高,而且可提供定性结果)。
固定液的要求:①挥发性小,在操作温度下有较低蒸气压,以免流失。②热稳定好,在操作温度下呈液态但不发生分解。③对试样个组分有适当的溶解能力。④具有高的选择性。⑤化学稳定性好,不与被测物质起化学反应。
“相似相溶”原则选择固定液:分离非极性物质:一般选用非极性固定液。分离极性物质:选用极性固定液。分离非极性和极性混合物:一般选用极性固定液。分离能形成氢键的试样:一般选用极性或氢键型固定液。复杂的难分离物质:可选择两种或两种以上的混合固定液。未知样品:用几种常用固定液试验。
选择柱温的一般原则:①在使最难分离的组分有尽可能好的分离,且保留时间适宜,峰形对称的前提下,采取适当低的柱温。②柱温不能高于固定液的最高使用温度。③柱温要高于固定液的熔点。气相色谱流动相:对组分没有亲和力的惰性气体,对分离选择性几乎无影响。
高效液相色谱流动相:可选用不同极性的液体。选择余地大;对分离影响大(与组分或固定相均作用)。方法的局限性:成本高、环境污染、梯度洗脱操作复杂。缺少灵敏度高的通用型检测器。复杂样品分离,缺少总理论塔板数达数十万的色谱柱。压易分解或变性的生物样品。
光电二极管阵列检测器:可获得三维色谱-光谱图的检测器;三维色谱-光谱图:时间-波长-吸收值;波长范围:19010-13 g/cm3);稠环芳烃、甾族化合物、酶、氨基酸、维生素、色素、蛋白质等荧光物质。
示差折光检测器:连续测定流出液折光指数的变化;通用型检测器,但灵敏度较低(10-7 g/cm3):反射式、偏转式、干涉式。使用要点:流动相组成要恒定(变化值<10-6);温度恒定(样品池与参比池的温差 ±10-4 C);压力恒定(检测池不耐压);流速稳定(流量波动<5%);不可用于梯度洗脱。
蒸发光散射检测器:通用型检测器。不需要衍生便可检测任何不带发色基团的化合物,比示差折光检测器更佳的灵敏度及稳定性。对温度变化不敏感,可用于梯度洗脱,响应值与样品质量有关,对所有样品的检测给出近乎一样的响应因子。测定物质的纯度和定量测定未知物。
电导检测器:基于物质在某些介质中电离后所产生电导变化进行测定的检测器。主要应用于离子色谱。受温度影响较大。
保留机理:溶质分子和溶剂分子与吸附剂表面活性点的竞争。流动相对样品的溶解能力。溶质分子的各种官能团与吸附剂表面活性点的分子间相互作用。
第五篇:智能仪器的发展
智能仪器的发展
微电子学和计算机等现代电子技术的成就给传统的电子测量与仪器带来了巨大的冲击和革命性的影响。微处理器在20世纪70年代初期问世不久,就被引进电子测量和仪器领域,所占比重在各项计算机应用领域中名列前茅。在这之后,随着微处理器在体积小、功能强、价格低等方面的进一步发展,电子测量与仪器和计算机技术的结合就愈加紧密,形成了一种全新的微型计算机化仪器。由于这种微型计算机的电子仪器拥有多数据的存储、运算、逻辑判断、自动化操作及与外界通信的功能,具有一定的职能作用,因而被成为智能仪器,以区别于传统的电子仪器。近年来,智能仪器已开始从较为成熟的数据处理向知识处理方面发展,并具有模糊判断、故障判断、容错技术、传感器融合、机件寿命预测能功能,使智能仪器向更高的层次发展。由于智能仪器一开始就显示它强大的生命力,目前已成为仪器仪表发展的一个主导方向。并对自动控制、电子技术、国防工程、航天技术与科学试验产生了极其深远的影响。
智能仪器的软件分为监控程序和接口管理程序两部分。监控程序是面向仪器键盘和显示器的管理程序,其内容包括:通过键盘输入命令和数据,以对仪器的功能、操作方式与工作参数进行设置;按照仪器设置的参数,对采集的数据进行相关的处理;以数字、字符、图形等形式显示测量结果、数据处理的结果及仪器的状态信息。接口管理程序是面向通信接口的管理程序,其内容是接收并分析来自通信接口总线的远程命令,包括描述有关功能、操作方式与工作参数的代码;进行有关的数据采集与数据处理;通过通信接口送出仪器的测量结果、数据处理的结果及仪器的现行工作状态信息。
智能仪器仪表是计算机科学、电子学、数字信号处理、人工智能等新兴技术与传统的仪器仪表技术的结合。作为智能仪器核心部件的单片机计算机技术是推动智能仪器仪表向小型化、多功能化、人工智能化方向发展的动力。
不管是在现在,还是在未来,我们相信智能仪器将会在国家建设、企业发展中将会发挥重要的作用,做一名测控技术与仪器专业的学生,学习和掌握各种智能仪器,对现在的学习,还是对未来就业等问题都会有非常重要的作用。