用反函数法求值域

时间:2019-05-12 14:58:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用反函数法求值域》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用反函数法求值域》。

第一篇:用反函数法求值域

用反函数法求值域

一、反函数法

分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型

对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。

二、例题讲解

1、求函数y2x的值域。x1

由于本题中分子、分母均只含有自变量的一次型,易反解出x,从而便于求出反函数。yy2xx反解得x即y x12x2y

故函数的值域为:y(,2)(2,)。(反函数的定义域即是原函数的值域)

ex

12、求函数yx的值域。e1

解答:先证明yex1有反函数,为此,设ex1x1x2且x1,x2R,ex11ex21ex1ex2y1y2x12x10。e1ex21(e1)(ex21)

所以y为减函数,存在反函数。可以求得其反函数为:y1ln。此函数的定义域为1x

x(1,1),故原函数的值域为y(1,1)。

第二篇:求函数值域的方法

求函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;

②逆求法(反求法):通过反解x,用y 来表示,再由 x的取值范围,通过解不等式,得出 y的取值范围;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用均值不等式公式来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

第三篇:求函数的值域常见类型

求值域的几种常用方法

(1)观察法、直接法、配方法、换元法:

对于(可化为)“二次函数型”的函数常用配方法,如求函数ysin2x2cosx4,可变为ysin2x2cosx4(cosx1)22解决

(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数ylog1(x22x3)就是利用函数ylog1u和ux22x3的值域来求。

(3)判别式法:通过对二次方程的实根的判别求值域。如求函数y2x133的值域[,] x22x222

(4)分离常数法:常用来求“分式型”函数的值域。如求函数y

(5)利用基本不等式求值域:如求函数y3x的值域 x242cosx3的值域,因为 cosx1

(6)利用函数的单调性求求值域:如求函数y2x4x22(x[1,2])的值域

(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域

(8)导数法――一般适用于高次多项式函数,如求函数f(x)2x34x240x,x[3,3]的最小值。(-48)

m,(m>0)的函数,m<0就是单调函数了 x

4三种模型:(1)如yx,求(1)单调区间(2)x的范围[3,5],求值域(3)x  [-1,0)(0,4],求值x(9)对勾函数法 像y=x+

(2)如 yx4求(1)[3,7]上的值域(2)单调递增区间(x0或x4)x4,1,(1)求[-1,1]上的值域(2)求单调递增区间 x3(3)如y2x

例1.

1、已知函数f(x)=-x2+2ax+1-a在0≤x≤1时有最大值2,求a的值。

2、已知y=f(x)=x2-2x+3,当x∈[t,t+1]时,求函数的最大值和最小值。

例2. 设函数f(x)ax33x1(xR),若对于任意的x1,1都有f(x)0成立,则实数a的值为

x22xa例

3、已知函数f(x) ,x[1,).若对任意x[1,),f(x)0恒成立,试求实数a的取值范围。x

第四篇:求函数的值域的常见方法

求函数的值域的常见方法

王远征

深圳市蛇口学校

求函数的值域是高中数学的重点学习内容,其方法灵活多样,针对不同的问题情景,要求解题者,选择合适的方法,切忌思维刻板。本文就已知解析式求函数的值域,这类问题介绍几种常用的方法。

一、直接法

函数值的集合叫做函数的值域,根据定义,由函数的映射法则和定义域,直接求出函数的值域。

例1. 已知函数yx11,x1,0,1,2,求函数的值域。

2解:因为x1,0,1,2,而f1f33,f0f20,f11 所以:y1,0,3,注意:求函数的值域时,不能忽视定义域,如果该例的定义域为xR,则函数的值域为y|y1。请体会两者的区别。

二、反函数法

反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。例2. 求函数y1

x5的值域。2x1x分析与解:注意到20,由原函数求出用y表示2的关系式,进而求出值域。由y1

x5x2,得:x21因为20,所以y404y1,1y

值域为:y|4y1

三、函数的单调性

例3.求函数yx1在区间x0,上的值域。x

分析与解答:任取x1,x20,,且x1x2,则

fx1fx2

x1x2x1x21,因为0x

x1x

2x2,所以:x1x20,x1x20,当1x1x2时,x1x210,则fx1fx2;

当0x1x21时,x1x210,则fx1fx2;而当x1时,ymin2 于是:函数yx

在区间x0,上的值域为[2,)。x

构造相关函数,利用函数的单调性求值域。例4:求函数fxxx的值域。

1x0

分析与解答:因为1x1,而x与x在定义域内的单调性

1x0

不一致。现构造相关函数gxxx,易知g(x)在定义域内单调增。

gmaxg12,gming12,gx2,0g2x2,又f

xg2x4,所以:2f2x4,2fx2。

四、换元法

对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑通过换元的方法将

原函数转化为简单的熟悉的基本函数。当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元。

例5.求函数y(x5x12)(x5x4)21的值域。

959

分析与解答:令tx25x4x,则t。

424

ytt821t28t21t45,9119

当t时,ymin458,值域为y|y8

416164

例6.求函数yx2x的值域。

分析与解答:令tx,则x1t,t0,y1t22tt1

2当t0时,tmax102201 所以值域为(,1]。

例7.求函数yxxx223的值域。分析与解答:由yxxx223=x令x5

2x5,2cos,因为2x5022cos201cos1,[0,],则2x5=2sin,于是:y

5

2sin2cos52sin5,[,],4444

2

sin1,所以:52y7。24

五、配方法

对解析式配方,然后求函数的值域。此法适用于形如Fxaf当要注意fx的值域。

例8.求函数y

xbfxc,2xx23的值域。

(x1)24,于是:

分析与解答:因为2xx30,即3x1,y

0(x1)244,0y2。

1x22x

4例9.求函数y在区间x[,4]的值域。

4x

42x22x4

x6,分析与解答:由y配方得:yx2xxx14

1x2时,函数yx2是单调减函数,所以6y18; 4x4

当2x4时,函数yx2是单调增函数,所以6y7。

x

所以函数在区间x[,4]的值域是6y18。

六、判别式法

把函数yfx同解变形为关于的一元二次方程,利用0,求原函数的值域,此方法适用与解析式中含有分式和根式。

2x22x

3例10.求函数y的值域。

2xx

113

分析与解答:因为xx1x0,原函数变形为:

24

y2x2y2xy30(1)

当y2时,求得y3,所以y2。

当y2时,因为xR,所以一元二次方程(1)有实数根。则:

0,即:y24y2y302y

所以2y

10,3

七、基本不等式法

利用重要不等式ab2ab,a,bR求出函数的最值而得出值域的方法。此法的题形特征是:当解析式是和式时,要求积是定值;当解析式是积式时,要求和是定值;为此解答时,常需要对解析式进行恒等变形,具体讲要根据问题本身的特点进行拆项、添项;平方等恒等变形。



x230x

例11.求函数y的值域。

x

2x230x646

4x3234[x2] 分析与解答:y

x2x2x2

因为分母不为0,即x2,所以: 当x2时,x2取等号,ymax18; 当x2时,x2(当且仅当(x2)

2x2

x2

6464,x6时,16,当且仅当x2

x2x2

6464)2x2()16,x2x2

64,x6时,取等号,ymin50; x2

值域y(,18][50,)

注意:利用重要不等式时,要求fx0,且等号要成立。

八、数形结合法

当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。例12.如例4求函数yxx的值域。

分析与解答:令ux,vx,则u0,v0,uv2,uvy,22

原问题转化为 :当直线uvy与圆uv2在直角坐标系uov的第一象限有公

共点时,求直线的截距的取值范围。

由图1知:当uvy经过点(0,2)时,ymin当直线与圆相切时,ymaxOD所以:值域为2y2

2;

2OC

2

2。

九.利用函数的有界性:形如sinf(y),x2g(y),sin1,x20可解出Yr 范围,从而求出其值域或最值。

2x1

例.求函数yx的值域

21

[解析]:函数的有界性

2x1y1由yx得2x

y121

220,

y1

0y1或y1 y1

第五篇:分式型函数求值域的方法探讨

分式型函数求值域的方法探讨

在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。axb(ao,b0)(一次式比一次式)在定义域内求值域。cxd

2x12例1:求f(x)(x)的值域。3x2

3241112(x)122233解:f(x)=0, 23x233x23x233x233(x)3

一、形如f(x)

2其值域为y/y 3

一般性结论,f(x)axbd(ao,b0)如果定义域为x/xcxdc,则值域

ay/y c

例2:求f(x)2x1,x1,2的值域。3x

2分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。

12x1222解:f(x)=,是由y向左平移,向上平移得出,通过图3x233x233x

像观察,其值域为, 35

58

小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。a(a0)的值域。x

分析:此类函数中,当a0,函数为单调函数,较简单,在此我们不做讨论,当a0时,a'对函数求导,f(x)12,f'(x)0时,x(,a)a,),f'(x)0时,x

二、形如求f(x)x

x(a,0)(0,a),根据函数单调性,我们可以做出此类函数的大致图像,其我们常

其图像

4,(x(1,4)上的值域。x

2解:将函数整理成f(x)2(x),根据双钩函数的性质,我们可以判断此函数在(0,2)x例3:求f(x)2x

单调递减,在(2,)上递增,其在2处取最小值,比较1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为42,6 

mxnax2bxc

三、用双钩函数解决形如f(x)(m0,a0),f(x)ax2bxcmxn

(m0,a0)在定义内求值域的问题。

t24t1例3:(2010重庆文数)已知t0,则则函数y的最小值为_______.t

t24t11t4,to由基本不等式地y2 解:ytt

例4:求f(x)x1(x1)的值域。2xx

2解:令x1t,则xt1,则f(x)t1t=,(t1)2(t1)2t23t4t43t7其中t0.则由基本不等式得f(x)

4x22x21(x)的值域。例5:求f(x)2x12

t1t14)222(t12tt222解:令t2x1,则x,f(x)==t1 2ttt,其中t0,由基本式得f(x)22

1小结:对于此类问题,我们一般换元整理后,将函数变成f(x)x2a(a0)这类型的函x

数,解决此类函数注意应用基本不等式,当基本不等式不行的时候,注意应用双勾函数的思想去解决此类问题 ax2bxc(a0,m0)在定义域内求值域。

三、形如f(x)2mxbxc

2x2x1例5:求y2的值域。xx1

分析:当定义域为R时,我们采用判别式法求此类函数的值域。当定义域不为R时,不应采用此法,否则有可能出错。此时,我们要根据函数关系的特征,采用其他方法。

解:xx10恒恒成立,所以此函数的定义域为xR,将函数整理成关于x的方程,2

yx2yxy2x2x1,(y2)x2(y1)x(y1)0,当y20,关于x的方程

2恒有解,则(y1)4(y2)(y1)0,即1y7,显然,y2也成立,所以其3

值域为y/1y7

3

以上是求此类函数的常见方法,但同学们在解题过程中。不要拘泥以上方法,我们要根据具体函数的特征采用相对应的方法,多思考,举一反三,那以后解决此类问题就很容易了。3

下载用反函数法求值域word格式文档
下载用反函数法求值域.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2017用四舍五入法求近似数教案.doc

    用四舍五入法求近似数 教学目标: 1.结合我国少数民族人口数的具体事例,经历把精确数用四舍五入法改写成以“万”为单位的近似数的过程。 2.知道什么是精确数,理解四舍五入法的意......

    用列举法求概率教学设计

    用列举法求概率 鲁富青 教学目标: 知识与技能:了解用列表法求概率的意义,掌握用列表法求概率的常规方法。 过程与方法:以问题为载体,引导学生自主探究、讨论交流、归纳总结出......

    用列举法求概率教学设计

    用列举法求概率教学设计 用列举法求概率教学设计 2007-11-21 00:05:30.0 王珍 提供 设计思路与理论依据本节内容是第二十五章第二节“用列举法求概率”的第三课时,主要介绍用......

    高一函数整理求值域的方法(5篇材料)

    一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。解:由算术平方根的......

    用“四舍五入”法求近似数教学反思

    《新课程标准》强调:数学教学应“从学生的生活经验出发,将教学活动置于真实的生活背景之中,为他们提供观察、操作、实践探索的机会,用“四舍五入”法求近似数教学反思。让学生亲......

    用”四舍五入”法求近似数教学反思

    用”四舍五入”法求近似数教学反思 实验附小 数学组 对于近似数学生在日常活动中也已经接触到,不过没有出现这样的概念。而本课的学习相对系统一些,同时掌握求近似数的方法。......

    用列举法求概率教学案(学生用)

    九年级数学人教版第25章 概率初步教学案(廖明钢) 25.2用列举法求概率 --------画树形图求概率 教学目标: 知识与技能:(1)在具体情境中了解概率的意义。 (2)会画树形图计算简单事......

    排水法求体积

    教学内容:第51页的例题6 教学目标: 知识与技能:使学生进一步熟练掌握求长方体和正方体积的方法。过程与方法:能根据实际情况,应用排水法求不规则物体的体积。情感态度价值观:培......