第一篇:第1课时 用列表法求概率(教案)
25.2用列举法求概率
第1课时 用列表法求概率
【知识与技能】
初步掌握直接列举法计算一些简单事件的概率的方法.【过程与方法】
通过用列举法求简单事件的概率的学习,使学生在具体情境中分析事件.计算其发生的概率,解决实际问题.【情感态度】
体会概率在生活实践中的应用,激发学习数学的兴趣,提高分析问题的能力.【教学重点】
熟练掌握直接列举法计算简单事件的概率.正确理解和区分一次试验中包含两步或两个因素的试验.【教学难点】
能不重不漏而又简洁地列出所有可能的结果.一、情境导入,初步认识
1.复习回顾①概率的意义;②对于试验结果是有限等可能的事件的概率的求法.2.多媒体展示扫雷游戏,引入课题.二、典例精析,掌握新知
我们在日常生活中,常常会用掷硬币的方式来决定游戏的胜负,下列请同学们思考下面的这种游戏规则是否公平.例 老师向空中抛掷两枚同样的硬币,如果落地后一反一正,老师赢;如果落地后都只正面时,同学们赢,请问你们觉得这个游戏公平吗?
【教学说明】对“游戏是否公平”实际是看两方出现的概率大小如何.所以解决本题的关键是,分别计算出“一正一反”与“都是正面”的概率各是多少并比较,这里教师要引导学生条理清楚地列举出所有可能的结果,学生思考交流.解:我们利用表格的形式,列举出所有可能的结果.∴这游戏不公平.问:“同时掷两枚硬币”与“先后掷一枚硬币”这两种试验的所有可能一样吗?
答案:一样.三、运用新知,深化理解
1.在“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:20个商标牌中,有5个商标牌背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻,有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()
2.从甲、乙、丙三人中任意选两名代表参加会议,甲被选中的概率为()
3.在一个布袋里装有红、白、黑三种颜色的玻璃球各一个,它们除颜色外,没有其他区别,先从布袋中取出一个球,放回袋中并搅匀,再从袋中取一个球,则两次取出的恰好都是红球的概率是_____.4.袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率;
(1)第一次摸到红球,第二次摸到绿球;(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球.5.在“妙手推推推”的游戏中,主持人出示了一个9位数:258396417,让
参与者猜商品价格,被猜的价格是一个4位数,也就是这个9位数中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品的概率.【教学说明】本练习着重演练用列举法求简单事件的概率,可先让学生自主完成,再选派几名学生作答,教师再予以评点.【答案】1.B【解析】所有剩下的商标共20-2=18个,其中有奖的有5-1=4个,所以它第三次翻牌获奖的概率为4/18=2/9.2.C【解析】分析所有的可能结果为(甲、乙),(甲,丙),(乙,甲),(乙,丙),(丙,甲),(丙,乙).事件A包含的结果为(甲、乙),(甲,丙),(乙,甲),(丙,甲)共4个,故P(A)=4/6=2/3.3.1/9【解析】所有可能出现的结果有(红,红)、(红,白)、(红,黑)、(白,红)、(白,白)、(白,黑)、(黑,红)、(黑,白)、(黑,黑)共有9种,所以P(都是红球)=1/9.4.(1)1/4(2)1/2(3)1/2 5.所有可能结果有:2583,5839,8396,3964,9641,6417,其中只有一种是该商品的价格,所以猜中该商品的概率为1/6.四、师生互动,课堂小结
1.本堂课你学到了什么知识,有哪些收获? 2.你能不重不漏地列举出事件发生的所有可能吗? 3.你能正确求出P(A)=m/n吗?
【教学说明】围绕上述问题,教师引导学生交流归纳.用列举法求简单事件概率的一般步骤,重点是要让学生掌握方法.1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课通过以学生喜闻乐见的扫雷、掷硬币等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多有关概率的问题,本节课 的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.2.本节课还通过普通列举法与列表法,对找出包含两个因素的试验结果的对比,让学生感受到列表法的作用与长处,使学生易于接受知识.3.教师引导学生交流归纳知识点,看学生能否会不重不漏地列举出事件发生的所有可能,能否找出事件A中包含几种可能的结果,并能求P(A),教学时要重点突出方法.
第二篇:第2课时 用画树状图法求概率(教案)
第2课时 用画树状图法求概率
教学目标
【知识与技能】
理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】
经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】
通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】
会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】
列表法是如何列表,树状图的画法.列表法和树状图的选取方法.教学过程
一、情境导入,初步认识
播放视频《田忌赛马》,提出问题,引入新课.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马比齐王的马略逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌屡败后,接受了孙膑的建议,结果两胜一负,赢了比赛.(1)你知道孙膑给的是怎样的建议吗?
(2)假如在不知道齐王出马顺序的情况下,田忌能赢的概率是多少呢? 【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.二、思考探究,获取新知
1.用列表法求概率 课本第136页例2.分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有36种.我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?以第一个骰子的点数为横坐标,第二个骰子的点数为纵坐标,组成平面直角坐标系第一象限的一部分,列出表格并填写.【教学说明】教师引导学生列表,使学生动手体会如何列表,指导学生体会列表法对列举所有可能的结果所起的作用,总结并解答.指导学生如何规范的应用列表法解决概率问题.由例2可总结得:
当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:
①列表;②通过表格确定公式中m、n的值;③利用P(A)=m/n计算事件的概率.思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?
答:“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作此改动对所得结果没有影响.2.树状图法求概率.课本第138页例3.分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?
介绍树状图的方法:
第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)
第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:
由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤: ①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考
什么时候用“列表法”方便?什么时候用“树状图”法方便? 一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.三、运用新知,深化理解
在一只不透明的盒子里装有用“贝贝”(B)、“晶晶”(J)、“欢欢”(H)、“迎迎”(Y)和“妮妮”(N)五个福娃的图片制成的五张外形完全相同的卡片.小华设计了四种卡片获奖的方案(每个方案都是前后共抽两次,每次从盒子里抽取一张卡片).(1)第一次抽取后放回盒子并混合均匀,先抽到“B”后抽到“J”;(2)第一次抽取后放回盒子并混合均匀,抽到“B”和“J”(不分先后);(3)第一次抽取后不再放回盒子,先抽到“B”后抽到“J”;(4)第一次抽取后不再放回盒子,抽到“B”和“J”(不分先后); 问:(1)上述四种方案,抽中卡片的概率依次是_____,_____,_____,_____;(2)如果让你选择其中的一种方案,你会选择哪种方案?为什么? 【教学说明】这是只涉及两个步骤的试验,一般情况下用列表法求解,但第(3)、(4)种方案中涉及到“不放回”的问题,我们选择树状图法更好.学生交流合作,教师指导分析列表或画树状图.【答案】(1)1/25,2/25,1/20,1/10;
(2)选择方案(4),因为方案(4)获奖的可能性比其它几种方案获奖的可能性大.四、师生互动,课堂小结
1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?
2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?
【教学说明】教师提出问题,让学生进行回顾思考,并相互交流.课后作业
1.布置作业:从教材“习题25.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.教学反思
第三篇:10.2第一课时用列举法求概率(第1课时)(学案兼教案)
10.2用列举法求概率(第一课时)学习目标:
1.会用列表法求出简单事件的概率。2.会用列表法求出简单事件的概率。
3.体验数学方法的多样性灵活性,提高解题能力。学习过程
一、自主学习
掷一枚质量分布均匀的硬币,出现“正面”和“反面”的概率相等,连续掷两次,恰好有一次正面朝上的概率为()
1、小组合作动手实验一下,利用上节的方法估计。分析所有可能性的结果:如何来确定? 2.自己阅读课本p125-P126找出两种计算事件发生概率的方法.3.会用树状图和列举法表示投掷两枚硬币所出现的所有结果.巩固练习:
1、小明要过2个有红绿灯的路口,他在路口都是遇到绿灯的概率是_________。2、2个同学在猜测姚明所在的火箭对的一场比赛的胜负,他们都猜火箭胜的概率是________。
二、例题:(用树状图或列表的方法求解,小组内订正)
在A,B两个盒子中都装入分别写有数字1,2的两张卡片,分别从每个盒子中任取一张卡片,两张卡片上的数字之和为3的概率是多少?
巩固练习:把一个骰子掷两次,观察向上一面的点数,计算下列事件的概率(1)两次骰子的点数相同;(2)两次骰子点数的和为9;(3)至少有一次骰子的点数为3.分析:我们不妨把这两次的骰子分别记为第1次和第2次,这样就可以列表表示出所有可能出现的结果了.解:由题意列表得:
第1次第2次
由表可知,所有等可能的结果的总数共有()个
(1)
(2)
(3)
答:
用列举法求概率(第2课时)
第 1 页(共 2 页)
三、拓展提高:
在一个口袋中有5个完全相同的小球,把它们分别标号1,2,3,4,5,随机地摸出一个小球后放回,再随机地摸出一个小球,用列表法求下列事件的概率(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于5.练习:P 127 随堂练习
四、课堂小结
本节课你有什么收获?
五、【课堂检测】
1、连续二次抛掷一枚硬币,二次正面朝上的概率是()
3A、411 B、3 C、21 D、4
2、小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()
4A、911 B、3 C、21 D、9
3、某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()
1A、41 B、211 C、8 D、16
4.妞妞和她的爸爸玩“锤子,剪刀,布”游戏,每次用一只手可以出锤子,剪刀,布三种手势之一,规则是锤子赢剪刀,剪刀赢布,布赢锤子,若两人出相同手势,则打平。
(1)你帮妞妞算算爸爸出“锤子”的概率是多少?(2)妞妞决定这次出“布”,妞妞赢的概率是多少?(3)妞妞和爸爸出相同手势的概率是多少?
5、小亮和小刚报名参加学校运动会的100米短跑比赛,预赛分A,B,C三组进行,运动员通过抽签决定参加哪个小组,小亮和小刚恰好分到同一个组的概率是多少?
6、小华买了一套科普读物,有“上、中、下”三册,要整齐的摆在书架上,其中恰好摆成“上、中、下”顺序的概率是。
作业:必做:习题10.3 选做:伴你学 我的收获与疑惑
__________________________________________
用列举法求概率(第2课时)
第 2 页(共 2 页)
第四篇:25.2 第2课时 用树状图求概率
人教版数学九年级上册
第2课时 用树状图求概率
教学目标:1.学习用树形图法计算概率。2.并通过比较概率大小作出合理的决策。重点:会运用树形图法计算事件的概率。
难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。导学过程: 1.自主学习
自学教材P152—P153的例
6、学习三个及三个以上因素求概率的方法——树形图 例6: 甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?
此题与前面两题比较,要从三个袋子里摸球,即涉及到3个因素。此时用列表法就不太方便,可以尝试树形图法。
2、巩固练习
假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中有两只雄鸟的概率是多少?
3.学以致用:
经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:
①三辆车全部继续前行; ②两辆车向右转,一辆车向左转; ③至少有两辆车向左转。
4、深化提高
把三张形状、大小相同但画面不同的风景图片都平均剪成三段,然后带上、中、下三段分别混合洗匀。从三堆图片中随机地各抽出一张,求着三张图片恰好组成一张完整风景图片的概率。
课堂小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”。运用树形图法 求概率的步骤如下:
m①画树形图 ; ②列出结果,确定公式P(A)=中m和n的值;
nm③利用公式P(A)=计算事件概率。n
第五篇:用列举法求概率教学设计
用列举法求概率
鲁富青
教学目标: 知识与技能:了解用列表法求概率的意义,掌握用列表法求概率的常规方法。过程与方法:以问题为载体,引导学生自主探究、讨论交流、归纳总结出用列举法求概率的一般方法。
情感态度与价值观:.逐步熟悉数形结合的思想方法。
教学重点和难点
重点: 掌握用列表法求概率的常规方法。
难点:.逐步熟悉数形结合的思想方法。
教学过程: 1.复习回顾:
教师带领学生回忆:概率的概念、公式。步骤。一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含在其中的m种结果,那么事件A发生的概率为: 求概率的步骤:
(1)列举出一次试验中的所有结果(n个);
(2)找出其中事件A发生的结果(m个);
(3)运用公式求事件A的概率:
2.例题导入
教师出示引例:掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;
(3)一枚硬币正面朝上,一枚硬币反面朝上; 为了不重不漏地列出所有这些结果, 你有什么好办法么?
掷两枚硬币,不妨设其中一枚为A,另一枚为B,用列表法列举所有可能出现的结果: 3.典例示范
教师出示两个例题,引领学生用列表法列举所有可能出现的结果: 例1:如图,甲转盘的三个等分区域分别写有数字1、2、3,乙转盘的四个等分区域分别写有数字4、5、6、7。现分别转动两个转盘,求指针所指数字之和为偶数的概率。
例2:掷一个骰子,观察向上的一面的点数,求下列事件概率: 1.点数为2
2.点数为奇数
3.点数大于2且小于5 4.小试牛刀
紧扣本节课主题,教师选择两个难度不太大的习题:
1、甲、乙两人在玩转盘游戏时,把转盘 A、B 分别分成 4 等份和 3 等份,并在每一份内标上数字,如图 2.游戏规定,转 动两个转盘,停止后,指针所指的两个数字之和为奇数时,甲 获胜;为偶数时,乙获胜.用列表法求甲获胜的概率.
2、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。连续投10次,谁得分高,谁就获胜。
(1)请你想一想,谁获胜的机会大?并说明理由;
(2)你认为游戏公平吗?
5、小结
“列表法”的意义:
当试验涉及两个因素(例如两个转盘)并且可能出现的结果数目较多时,为不重不漏地列出所有的结果,通常采用“列表法”。
板书设计
“33.1用列举法求概率
列表法”的意义:
当试验涉及两个因素(例如两个转盘)并且可能出现的结果数目较多时,为不重不漏地列出所有的结果,通常采用“列表法”。
教学反思:
在本节课的教学中,我采用数形结合的方法进行教学,降低了学生学习的难度,学生都能够掌握用列表法求出事件概率的方法。教学中我充分发挥学生主动性,由学生小组讨论,通过具体的例子总结得出用列表法求出事件概率的方法。提高了学生的团结合作的能力和抽象概括的能力。教学时,我根据课改理念精神,利用学生的感性材料的作用,以启发和小组讨论交流为主,进行谈话式的引导,并注意利用设计练习题,以期达到调动学生学习积极性,使学生的思维更加活跃,让学生在理解用列表法求出事件概率的方法的基础上学会用数形结合的思想解决数学问题。我觉得这节课学生的收获不小。