第一篇:第33课时 概率1(本站推荐)
33课时课题:概率(1)
备课学校: 济南第三十四中学执笔人:张海刚
一、考试大纲要求:
1、在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
2、通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。
3、通过实例进一步丰富对概率的认识,并能解决一些实际问题。
二、重点、易错点分析:
1、重点:了解确定事件(必然事件,不可能事件)和不确定事件的意义,能区分确定事件和不确定事件,能运用列举法计算简单的事件发生的概率。
2、易错点:确定事件(必然事件,不可能事件)和不确定事件的意义,不确定事件概率的计算。
三、考题集锦:
(一)选择:
1.(2013•宜昌)2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()
A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中.C.科比罚球投篮1次命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小
2.(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()
A.摸出的三个球中至少有一个球是黑球.B.摸出的三个球中至少有一个球是白球.
C.摸出的三个球中至少有两个球是黑球.D.摸出的三个球中至少有两个球是白球
3.(2013年山东东营)2013年“五〃一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是()
1A.31B.61C.91D.424.(2013•张家界)下列事件是必然事件的是()A.有两边及一角对应相等的两个三角形全等B.方程xx10有两个不等实根
C.面积之比为1︰4的两个相似三角形的周长之比也是1︰4D.圆的切线垂直于过切点的半径
5.(2013年山东聊城3分)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1.④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有【】
A.1个B.2个C.3个D.4个
(二)填空: 1
1.(2013年山东淄博4分)请写出一个概率小于2的随机事件:.
2.(2013年山东枣庄4分)从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是.3.(2013,河北)如图10,A是正方体小木块(质地均匀)的一顶点,将木块随机
投掷在水平桌面上,则A与桌面接触的概率是________.
4.(2013•茂名)如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是.
(三)解答:
1.(2013•红河)今年“五〃一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.
(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;
(2)求抽奖人员获奖的概率.
2.(2013•昆明)有三张正面分别标有数字:-1、1、2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字。
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出的卡片上的数字的所有结果;
,第二次抽出的数字作为点的纵坐标,求点(,)(2)将第一次抽出的数字作为点的横坐标
2落在双曲线=x上的概率。
四、典型例题:
1、下列事件中,属于必然事件的是()
A. 某种彩票的中奖率为11,佳佳买10张彩票一定能中奖C. 抛一枚硬币,正面朝上的概率为 10
2B.“小沈阳”明年一定能上春节联欢晚会表演节目D. 这次数学考试乐乐肯定能考满分
本题涉及的知识点:确定事件(必然事件,不可能事件)和不确定事件的意义
本题需注意的事项:必然事件是指一定发生的事件,其发生的可能性是100%。
2、若气象部门预报明天下雨的概率是80%,下列说法正确的是().
A.明天一定会下雨B.明天一定不会下雨
C.明天下雨的可能性比较大D.明天下雨的可能性比较小
本题涉及的知识点:对概率的实际意义的理解。
本题需注意的事项:概率是估计事情发生的可能性的大小程度的量,是一种不十分准确的量。
3、在一个不透明的布袋中有4个完全相同的乒乓球,把它们分别标号为1,2,3,4,随机地摸出一个乒乓球然后放回,再随机地摸出一个乒乓球.求下列事件的概率:
(1)两次摸出的乒乓球的标号相同;(2)两次摸出的乒乓球的标号的和等于5.
本题涉及的知识点:计算不确定事件的概率
本题用到的重要方法:列表法或树状图
本题需注意的事项:利用列表法或树状图求事件的概率是中考的热点,有一定的灵活性,要熟悉掌握各种概率模型,以及不同的概率模型计算概率的注意点(如摸球放不放回)。
五、随堂练习:
2.(2013•沈阳)下列事件中,是不可能事件的是()
A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环.
C.明天会下雨D.度量三角形的内角和,结果是360°
3.(2013•潜江)下列事件中,是必然事件的为
A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃
C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》
4.(2013•漳州)下列事件中是必然事件的是()
A.一个直角三角形的两个锐角分别是40°和60°B.抛掷一枚硬币,落地后正面朝上
C.当x是实数时,x≥0D.长为5cm、5cm、11cm的三条线段能围成一个三角形
5.(2013•包头)下列事件中是必然事件的是()
A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形与原来图形对应线段相等
C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上
26(2013兰州)“兰州市明天降水概率是30%”,对此消息下列说法中正确的是()
A.兰州市明天将有30%的地区降水 B.兰州市明天将有30%的时间降水
C.兰州市明天降水的可能性较小D.兰州市明天肯定不降水
7.如图,有一圆盘其中的阴影部分的圆心角为45°,若向圆内投镖,如果某人
每次都投入圆内,那么他投中阴影部分的概率为()
1131A.8B.4C.2D.
4六、本课小结:
1、知识:概率的有关概念:(1)必然事件是指,不可能事件是指,必然事件和不可能事件都是事件,而不确定事件是指.(2)概率是指.概率一般用P表示.事件的概率:(3)P(必然事件)=;P(不可能事件)=;<P(不可能事件)<.概率的计算(4)Pk中,k为,n为.n
(5)计算简单事件发生的概率的方法有和.2、方法:列表法,树状图法
3、注意事项:(1)确定事件包括必然事件和不可能事件;必然事件是指事先就肯定会发生的事件,也就是指该事件每一次一定发生,不可能不发生;不可能事件是指事先就肯定不会发生的事件,也就是指该事件每一次一定不会发生.(2)不确定事件是指事先无法肯定会不会发生的事件,也就是指该事件可能发生,也可能不发生.(3)概率是反映事件发生的可能性大小的量,它是一个比值,一般用P表示:P(A)事件A可能出现的结果
所有可能出现的结果.
(4)必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;不确定事件发生的概率在0~1之间,记作0<P(不确定事件)<1.
(5)一步试验事件发生的概率等于试验中发生的结果数k除以所有可能出现的结果数n,即P两步试验事件发生的概率的计算方法有两种,一种是列表法,另一种是画树状图法.
4、发现问题:k;n
第二篇:概率统计教案1
第一章
概率论的基本概念
1.确定性现象: 在一定条件下必然发生的现象.2.统计规律性: 在个别试验或观察中可以出现这样的结果,也可以出现那样的结果,但在大量重复试验或观察中所呈现出的固有规律性.3.随机现象: 在个别试验中其结果呈现
-----概率论与数理统计教案 第一章 概率论的基本概念 第1页
共51页-----出不确定性,在大量重复试验中其结果又具有统计规律性的现象.§1.1 随机试验 1.随机试验: ①可以在相同条件下重复进行;
②每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;
③进行一次试验之前不能确定哪一个结
-----概率论与数理统计教案 第一章 概率论的基本概念 第2页
共51页-----果会出现.§1.2 样本空间、随机事件
1.随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.2.随机试验E的每个结果称为样本点.例1.写出下列随机试验的样本空间.①考察某一储蓄所一天内的储款户数.S0 , 1 , 2 , .-----概率论与数理统计教案 第一章 概率论的基本概念 第3页
共51页-----②10件产品中有3件是次品,每次从中任取一件(取后不放回),直到将3件次品都取出,记录抽取的次数.S3 , 4 , 5 , 6 , 7 , 8 , 9 , 10.③在②中取后放回,记录抽取的次数.S3 , 4 , 5 , .④一口袋中有5个红球、4个白球、3个蓝球,从中任取4个,观察它们具有哪
-----概率论与数理统计教案 第一章 概率论的基本概念 第4页
共51页-----几种颜色.S={(红),(白),(红、白),(红、蓝),(白、蓝),(红、白、蓝)}.3.样本空间S的子集称为随机事件,简称事件.4.对于事件A,每次试验中,当且仅当这一子集中的一个样本点出现时称事件A发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第5页
共51页-----5.由一个样本点组成集合称为基本事件.6.在每次试验中总是发生的事件称为必然事件,即样本空间S.7.在每次试验中都不发生的事件称为不可能事件,即空集.例2.抛掷两枚骰子,考察它们所出的点数.写出这一随机试验的样本空间及下列
-----概率论与数理统计教案 第一章 概率论的基本概念 第6页
共51页-----随机事件.①“两枚骰子点数之和为5”.②“两枚骰子点数之和为2”.③“两枚骰子点数之和为1”.④“两枚骰子点数之和不超过12”.解: 对两枚骰子编号为1、2.用(I , J)表示第1枚骰子出I点,第2枚骰子出J点.S={(1, 1),(1, 2),(1, 3),(1, 4),(1, 5),-----概率论与数理统计教案 第一章 概率论的基本概念 第7页
共51页-----(1, 6),(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6),(3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6),(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6),(5, 1),(5, 2)(5, 4),(5, 5),(5, 6),(6, 1),3),(6, 4),(6, 5),(6, 6)}.① {(1, 4),(2, 3),(3, 2),②{(1, 1)}.-----概率论与数理统计教案 第一章 概率论的基本概念 第8页
共51页-----,(6, 2)(5, 3),(6,(4, 1)}.③Ø.④S.8.事件间的关系与运算: ①事件A发生必导致事件B发生,称事件B包含事件A,记为AB.②事件AB{xxA或xB}称为事件A与事件B的和事件.当且仅当A与B至少有一个发生时,事件AB发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第9页
共51页-----k1Ak为n个事件A 1,A2,…,An的和事件.Ak为可列个事件A 1,A2,…的和事件.nk1③事件AB{xxA且xB}称为事件A与事件B的积事件.当且仅当A与B同时发生时,事件AB发生.AB也记作AB.k1Ak为n个事件A 1,A2,…,An的积事件.n
-----概率论与数理统计教案 第一章 概率论的基本概念 第10页
共51页-----k1Ak为可列个事件A 1,A2,… 的积事件.AB{xxA且xB} ④事件
称为事件A与事件B的差事件.当且仅当A发生、B不发生时,事件AB发生.⑤若AB,则称事件A与事件B是互不相容的,或互斥的.即事件A与事件B不
-----概率论与数理统计教案 第一章 概率论的基本概念 第11页
共51页-----能同时发生.⑥若ABS且AB,则称事件A与事件B互为逆事件,或互为对立事件.即对每次试验,事件A与事件B中必有一个发生,且仅有一个发生.A的对立事件记为A,即ASA.9.事件的运算定律: ①交换律:
-----概率论与数理统计教案 第一章 概率论的基本概念 第12页
共51页-----ABBA,ABBA.②结合律: A(BC)(AB)C,A(BC)(AB)C.③分配律: A(BC)(AB)(AC),A(BC)(AB)(AC).④德∙摩根律:
-----概率论与数理统计教案 第一章 概率论的基本概念 第13页
共51页-----ABB A,ABBA.§1.3 频率与概率 1.在相同条件下,进行了n次试验,事件A发生的次数nA称为事件A发生的频数.nA比值称为事件A发生的频率,记为fn(A).n2.频率的基本性质: ①0fn(A)1.-----概率论与数理统计教案 第一章 概率论的基本概念 第14页
共51页-----②fn(S)1.③若A 1,A2,…,Ak是两两互不相容的事件,则
.fn(AA)f(A)f(A)1kn1nk3.当重复试验的次数n逐渐增大时,频率fn(A)呈现出稳定性,逐渐稳定于某个常数,这种统计规律性称为频率稳定性.4.设E是随机试验,S是它的样本空间.-----概率论与数理统计教案 第一章 概率论的基本概念 第15页
共51页-----对于E的每一事件A赋于一个实数,记为p(A),称为事件A的概率,且关系p满足下列条件:
①非负性: p(A)0.②规范性: p(S)1.③可列可加性: 设A 1,A2,…是两两互不相容的事件,则
P(A1A2)P(A1)P(A2).-----概率论与数理统计教案 第一章 概率论的基本概念 第16页
共51页-----5.概率的性质: ①p()0.②(有限可加性)设A 1,A2,…An是两两互不相容的事件,则 P(AAn)P(A)P(An).1
1③若AB,则
P(BA)P(B)P(A),P(B)P(A).④p(A)1p(A).-----概率论与数理统计教案 第一章 概率论的基本概念 第17页
共51页-----
⑤p(A)1.⑥(加法公式)P(AB)P(A)P(B)P(AB),P(ABC)P(A)P(B)P(C)P(AB)P(AC)P(BC)P(ABC).§1.4 等可能概型(古典概型)1.具有以下两个特点的试验称为古典概型.-----概率论与数理统计教案 第一章 概率论的基本概念 第18页
共51页-----①试验的样本空间只包含有限个元素.②试验中每个基本事件发生的可能性相同.2.古典概型中事件概率的计算公式: 样本空间S{e1 , e2 , , en},事件A{ei , ei , , ei},12kk
P(A).n
-----概率论与数理统计教案 第一章 概率论的基本概念 第19页
共51页-----例1.抛掷两枚均匀的硬币,求一个出正面,一个出反面的概率.解: S={(正,正),(正,反),(反,正),(反,反)}.A={(正,反),(反,正)}.例2.抛掷两枚均匀的骰子,求点数之和不超过4的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第20页
共51页-----
21p(A).42解:
S={(1,1),(1,2),(1,3),(1,4),(1,5),…,(6,6)}.A={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}.61p(A).366例3.从一批由45件正品,5件次品组成的产品中任取3件产品.求恰有一件次品的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第21页
共51页-----
CC解: p(A)30.253.C50例4.袋中有5个白球3个黑球.从中按
15245下列方式取出3个球,分别求3个球都是白球的概率.①同时取.②不放回,每次取一个.③放回,每次取一个.-----概率论与数理统计教案 第一章 概率论的基本概念 第22页
共51页-----解: ①p(A)C3053CC30.179.8②p(B)A35A30.179.8③p(A)53830.244.例5.某班有23名同学,求至少有同学生日相同的概率(假定1年为天).-----概率论与数理统计教案 第一章 概率论的基本概念 第23页
共51页-----
名
2365(23)!C493.解: p(A)230.(365)p(A)1p(A)0.507.23365例6.从一副扑克牌(52张)中任取4张牌,求这4张牌花色各不相同的概率.14(C13)解: p(A)40.105.C52例7.甲项目和乙项目将按时完成的概率为0.75和0.90,甲、乙项目至少有一
-----概率论与数理统计教案 第一章 概率论的基本概念 第24页
共51页-----个项目将按时完成的概率为0.99.求下列事件的概率.①两项目都按时完成.②只有一个项目按时完成.③两项目都没有按时完成.B表解: 设用A表示“甲项目按时完成”、示“乙项目按时完成”,则p(A)0.75,p(B)0.90,p(AB)0.99.-----概率论与数理统计教案 第一章 概率论的基本概念 第25页
共51页-----①p(AB)P(A)p(B)p(AB)
0.750.90.99 0.66.②
p[(AB)(AB)]p(AB)p(AB)
0.990.66 0.33.③p(AB)p(AB)
1p(AB)
-----概率论与数理统计教案 第一章 概率论的基本概念 第26页
共51页-----
10.99 0.01.例8.将一枚骰子连续掷5次,求下列各事件的概率.①“5次出现的点数都是3”.②“5次出现的点数全不相同”.③“5次出现的点数2次1点,2次3点,1次5点”.-----概率论与数理统计教案 第一章 概率论的基本概念 第27页
共51页-----④“5次出现的点数最大是3点”.⑤“5次出现的点数既有奇数点,又有偶数点”.§1.5 条件概率
例1.抛掷一枚均匀的骰子.设A表示“出现的点数不大于3”,B表示“出现偶数点”,求: ①“出现偶数点”的概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第28页
共51页-----②已知“出现的点数不大于3”的条件下,“出现偶数点”的概率.解: S={1,2,3,4,5,6},A={1,2,3},B={2,4,6}.31①p(B).62②用“BA”表示已知事件A发生的条件下,事件B发生.-----概率论与数理统计教案 第一章 概率论的基本概念 第29页
共51页-----AB{2},1P(AB)16p(BA).33P(A)6
1.设A、B是两个事件,且p(A)0,称
P(AB)p(BA)P(A)为在事件A发生的条件下事件B发生的条件概率.-----概率论与数理统计教案 第一章 概率论的基本概念 第30页
共51页-----
例2.一批零件100个,其中次品10个,正品90个.从中连续抽取两次,做非回臵式抽样.求: ①第一次取到正品的概率.②第一次取到正品的条件下第二次取到正品的概率.解: 设A表示“第一次取到正品”,B表示“第二次取到正品”.-----概率论与数理统计教案 第一章 概率论的基本概念 第31页
共51页-----
909①p(A).10010289C90②p(AB)2,C100110P(AB)89.p(BA)P(A)992.乘法定理: 设p(A)0,则
p(AB)p(BA)p(A).设p(AB)0,则
p(ABC)p(CAB)p(BA)p(A).-----概率论与数理统计教案 第一章 概率论的基本概念 第32页
共51页-----例3.一批零件100个,次品率为10%.从中接连取零件,每次任取一个,取后不放回.求第三次才取到正品的概率.解: 设用A i表示“第i次取到正品”(i1 , 2 , 3).由于次品率为10%,所以次品10个,正品90个.P(A 1 A 2A 3)P(A 1)P(A 2 A 1)P(A 3A 1 A 2)
10990 1009998
-----概率论与数理统计教案 第一章 概率论的基本概念 第33页
共51页-----
0.0083.3.样本空间的一个划分: ①
BiBj , ij , i , j1 , 2 , , n.②B1B2BnS.称B1 , B2 , , Bn为样本空间的一个划分(或完备事件组).4.全概率公式: 若B1,B2,…,Bn为样本
-----概率论与数理统计教案 第一章 概率论的基本概念 第34页
共51页-----空间的一个划分,且P(Bi)0(i1 , 2 , , n),A为某一事件,则 P(A)P(A B1)P(B1)P(A B2)P(B2)
P(A Bn)P(Bn).5.贝叶斯公式: 若B1,B2,…,Bn为样本空间的一个划分,A为某一事件,且P(A)0,P(Bi)0(i1 , 2 , , n),则
-----概率论与数理统计教案 第一章 概率论的基本概念 第35页
共51页-----,P(BiA)nP(ABj)P(Bj)j1P(ABi)P(Bi)(i1 , 2 , , n).例4.两台机床加工同样的零件.第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件堆放在一起.已知第一台加工的零件比第二台加工的零件多一倍,从中任取一个零件,求:
-----概率论与数理统计教案 第一章 概率论的基本概念 第36页
共51页-----①这个零件不是废品的概率.②如果已知取出的这个零件不是废品,那么,它是第一台机床生产的概率.解: 设用A表示“此零件不是废品”,用Bi表示“此零件由第i台机床加工”(i1 , 则
P(B21 1)3,P(B 2)3,P(A B 1)0.97,P(A B 2)0.98.-----概率论与数理统计教案 第一章 概率论的基本概念 第37页
共51页-----
2),①
P(A)P(A B1)P(B1)P(A B2)P(B2)
210.970.98 330.973.②
P(AB1)P(B1)P(B1A)P(AB1)P(B1)P(AB2)P(B2)
-----概率论与数理统计教案 第一章 概率论的基本概念 第38页
共51页-----
20.973 210.970.98330.664.例5.有5个盒子,分别编号1、2、3、4、5.第1及第2号盒子各有5个球,其中3个白球,2个红球.第3及第4号盒子也各有5个球,其中1个白球,4个红
-----概率论与数理统计教案 第一章 概率论的基本概念 第39页
共51页-----球.第5号盒子有4个白球,1个红球.现随机地选一个盒子并从中任取一球,求: ①它是白球的概率.②如果已知取出的是红球,那么,它是来自第5号盒子的概率.解: 设用A表示“任取一球是白球”,用,用Bi表示“第A表示“任取一球是红球”i个盒子被选中”(i1 , 2 , 3 , 4 , 5),则
-----概率论与数理统计教案 第一章 概率论的基本概念 第40页
共51页-----
1P(B 1)P(B2)P(B3)P(B4)P(B5),53P(A B 1)P(A B 2),51P(A B 3)P(A B 4),54P(A B 5),52P(A B 1)P(AB 2),54P(A B 3)P(A B 4),5-----概率论与数理统计教案 第一章 概率论的基本概念 第41页
共51页-----
1P(A B 5).5①P(A)P(A B1)P(B1)P(A B2)P(B2)P(A B3)P(B3)P(A B4)P(B4)P(A B5)P(B5)3131111141 555555555512.25
-----概率论与数理统计教案 第一章 概率论的基本概念 第42页
共51页-----②P(B5A)P(ABi)P(Bi)i15P(AB5)P(B5)
1155 1(22441)5555551.136.先验概率: P(Bi).7.后验概率: P(BiA).-----概率论与数理统计教案 第一章 概率论的基本概念 第43页
共51页-----例6.有一个袋内装有3个白球,2个黑球.有甲、乙、丙三人依次在袋内各摸一球.求: ①在有放回情况下,甲、乙、丙各摸到黑球的概率.②在不放回情况下,甲、乙、丙各摸到黑球的概率.解: 设用A、B、C分别表示“甲、乙、-----概率论与数理统计教案 第一章 概率论的基本概念 第44页
共51页-----丙摸到黑球”,用A、B、C分别表示“甲、乙、丙摸到白球”.2①P(A)P(B)P(C).52②P(A).5P(B)P(BA)P(A)P(BA)P(A)
1223 45452.5-----概率论与数理统计教案 第一章 概率论的基本概念 第45页
共51页-----P(C)P(CAB)P(AB)P(CAB)P(AB)
P(CAB)P(AB)P(CAB)P(AB)P(CAB)P(BA)P(A)
P(CAB)P(BA)P(A)P(CAB)P(BA)P(A)P(CAB)P(BA)P(A)
121321232230 453453453452.5
-----概率论与数理统计教案 第一章 概率论的基本概念 第46页
共51页-----§1.6 独立性
1.设A与B是两事件,如果 p(AB)p(A)p(B),则称A与B相互独立,简称A与B独立.2.设A与B是两事件,且p(A)0,如果A与B相互独立,则
p(BA)p(B).3.设A与B相互独立,则下列各对事件也
-----概率论与数理统计教案 第一章 概率论的基本概念 第47页
共51页-----相互独立.A与B,A与B,A与B.证: P(A)P(B)P(A)[1P(B)]
P(A)P(A)P(B)
P(A)P(AB)
(AAB)P(AAB)P(AB),所以A与B相互独立.同理可证A与B,A与B相互独立.-----概率论与数理统计教案 第一章 概率论的基本概念 第48页
共51页-----4.设A、B、C是三个事件,如果
p(AB)p(A)p(B),p(AC)p(A)p(C),p(BC)p(B)p(C),p(ABC)p(A)p(B)p(C),则称A、B、C相互独立.例1.用一支步枪射击一只小鸟,击中的概率为0.2.问3支步枪同时彼此独立地
-----概率论与数理统计教案 第一章 概率论的基本概念 第49页
共51页-----射击,击中小鸟的概率.解: 设用A i表示“第i支步枪击中小鸟”,则(i1 , 2 , 3),用B表示“小鸟被击中”
P(B)P(A 1A 2A 3)
1P(A 1A 2A 3)1P(A 1 A 2 A 3)
1P(A 1)P(A 2)P(A 3)10.80.80.8
-----概率论与数理统计教案 第一章 概率论的基本概念 第50页
共51页-----
第三篇:概率教案
概率的预测
一、教学目标
掌握通过逻辑分析用计算的方法预测概率,知道概率的预测,概率的频率含义,所有事件发生的概率和为1;经历各种疑问的解决,体验如何预测一类事件发生的概率,培养学生分析问题解决问题的能力;
二、重点:通过逻辑分析用计算的办法预测概率
三、难点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果
四、教学方法:讲练结合法
五、教学器具:多媒体、扑克
六、教学过程
(一)关注我们身边的事:
1)如果天气预报说:“明日降水的概率是95%,那么你会带雨具吗?” 2)有两个工厂生产同一型号足球,甲厂产品的次品率为0.001,乙厂产品的次品率是0.01. 若两厂的产品在价格等其他方面的条件都相同,你愿意买哪个厂的产品?
上述事例告诉我们知道了一件事情发生的概率对我们工作和生活有很大的指导作用.(二)热身运动:
我们三(1)班有21位同学,其中女同学11名,老师今天早上正好看见我们班一位同学在操场锻炼身体,问:我遇到男同学的机会大,还是女同学的机会大?
遇见男生的概率大还是女生的概率大?我们需要做实验吗?我们能否去预测?
复习上节课概率的计算方法
(三)热点探讨:
问题 2006年10月6日,经过三年的建设,由世界建筑大师贝聿铭老先生设计的苏州市博物馆新馆在百万苏州市民的热切期盼中正式开馆.为了让大家能一睹这一被贝老喻为“最亲爱的小女儿”的方容,老师准备带一部分同学去参观苏博新馆,那么带哪些同学去呢?老师准备这么做: 在我们班里有女同学11人,男同学10人。先让每位同学都在一张小纸条上写上自己的名字,放入一个盒中搅匀。如果老师闭上眼睛从中随便的取出一张纸条,想请被抽到的同学等会上讲台和老师一起去参观,这个方法公平吗?那么抽到男同学名字的概率大还是抽到女同学的概率大?
分析 全班21个学生名字被抽到的机会是均等的.
11解
P(抽到女同学名字)=,2110
P(抽到男同学名字)=,所以抽到女同学名字的概率大. 请思考以下几个问题:,表示什么意思? 21如果抽一张纸条很多次的时候,平均21次就能抽到11次女同学的名字。
2、P(抽到女同学名字)+P(抽到男同学名字)=100%吗?
如果改变男、女生的人数,这个关系还成立吗? 请学生回答
所有等可能事件发生的概率之和是1
1、抽到女同学名字的概率是
四、你能中奖吗:
1.一商场搞活动促销,规定购物满一百元可以抽一次奖,规则如下,在一只口袋中放着8只红球和16只黑球,抽到红球即获奖,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,取出黑球与红球的概率分别是多少?
162解 P(取出黑球)==, 2
431 P(取出红球)=1-P(取出黑球)=,321所以,取出黑球的概率是,取出红球的概率是. 想一想:
33如果商场换成以下的抽奖方案:甲袋中放着20只红球和8只黑球,乙袋中则放着20只红球、15只黑球和10只白球,这三种球除了颜色以外没有任何区别.两袋中的球都已经各自搅匀.蒙上眼睛从口袋中取一只球,取出黑球才能获奖,你选哪个口袋成功的机会大呢?
解题过程见课件
下面三位同学的说法,你觉得这些同学说的有道理吗?
1.A认为选甲袋好,因为里面的球比较少,容易取到黑球;
2.B认为选乙袋好,因为里面的球比较多,成功的机会也比较大。3.C则认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.
幸运抽奖:老师手上有两组扑克,一组有7张,其中两张A,另一组16 张,其中四张A,现在老师抽一名同学上来选择一组抽一张,抽到A获奖。
小试身手
在分别写有1到20的20张小卡片中,随机地抽出1张卡片.试求以下事件的概率.(1)该卡片上的数字是5的倍数;(2)该卡片上的数字不是5的倍数;
(3)该卡片上的数字是素数;(4)该卡片上的数字不是素数.学生上黑板书写,纠正学生的不规范书写
注意关注所有机会均等的结果和所需要关注的事件个数 试一试
1、任意翻一下2005年日历,翻出1月6日的概率为________;翻出4月31日的概率为___________。翻出2号的概率为___________。
2、掷一枚普通正六面体骰子,求出下列事件出现的概率:(1)点数是3;(2)点数大于4;(3)点数小于5;(4)点数小于7;(5)点数大于6;(6)点数为5或3.
3、李琳的妈妈在李琳上学时总是叮咛她:“注意,别被来往的车辆碰着”,但李琳心里很不舒服,“哼,我市有300万人口,每天的交通事故只有几十件,事件发生的可能性太小,概率为0。”你认为她的想法对不对?
4、小强和小丽都想去看电影,但只有一张电影票,你能用手中的扑克牌为他们设计一个公平游戏决定谁去看电影吗?(方法多种多样,让学生自己分析)
以上两题组织学生讨论
幸运笑脸:有一个幸运翻板,参与同学回答老师一个问题,答对可以获得一次翻板机会,20个板块中有5个后面试笑脸,翻到笑脸可获得奖品。(是否公平,为下节课埋个伏笔)
五、小 结
1. 要清楚所有等可能结果; .要清楚我们所关注的是发生哪个或哪些结果; 3 . 概率的计算公式:
六、布置作业
教学反思:
用样本估计总体(1)知识技能目标
1.进一步体会随机抽样是了解总体情况的一种重要的数学方法,抽样是它的一个关键; 2.根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.
重点和难点
通过随机抽样选取样本,绘制频数分布直方图、计算样本平均数和标准差并与总体的频数分布直方图、平均数和标准差进行比较,得出结论.
教学过程
一、创设情境
有这么一个笑话:妈妈让一个傻儿子去买一盒火柴,走的时候特别嘱咐这个傻儿子:“宝贝,买火柴的时候要注意买好火柴,就是一划就着的火柴,别买那划不着的火柴啊.”傻儿子答应了妈妈,就去买火柴了.回来的时候,他兴高采烈地喊:“妈妈,妈妈,火柴买回来了,我已经把每一根火柴都划过了,根根都是一划就着的好火柴!” 这虽然是一个笑话,但告诉了我们抽样的必要性. 再请看下面的例子:
要估计一个湖里有多少条鱼,总不能把所有的鱼都捞上来,再去数一数,但是可以捕捞一部分作样本,把鱼作上标记,然后放回湖中,过一段时间后,等带有标记的鱼完全混入鱼群后,然后再捕捞一网作第二个样本,并计算出在这个样本中,带标记的鱼的数目,根据带标记的鱼所占的第二个样本的比例就可以估计出湖中有多少条鱼.
在刚才讲的笑话中,傻儿子其实只要抽取一盒火柴中的一部分来考察火柴是否一划就着就可以了.
二、探究归纳
像这样,抽取一部分作为样本进行考查,用样本的特性去估计总体的相应特性,就是用样本估计总体.为了更好地学习本节知识,我们来回顾一下:什么是平均数、总体平均数、样本平均数、方差、标准差?
平均数:一般地,如果有几个数X1、X2、、X3、„„、Xn,那么x1(x1x2x3xn),n叫做这几个数的平均数.
总体平均数:总体中所有个体的平均数叫做总体平均数. 样本平均数:样本中所有个体的平均数叫做样本平均数.
方差:对于一组数据,在某些情况下,我们不仅要了解它们的平均水平,还要了解它们波动的大小(即偏离平均数的大小),这就是方差.
s21(x1x)2(x2x)2(xnx)2 n标准差:方差的算术平方根.
s1(x1x)2(x2x)2(xnx)2 n
三、例题解析
让我们仍以上一节300名学生的考试成绩为例,考察一下抽样调查的结果是否可靠.
假设总体是某年级300名学生的考试成绩,它们已经按照学号顺序排列如下(每行有20个数据):
如图1所示,根据已知数据,我们容易得到总体的频数分布直方图、平均成绩和标准差.
总体的平均成绩为78.1分,标准差为10.8分
图1 用简单随机抽样方法,得到第一个样本,如5个随机数是111,254,167,94,276,这5个学号对应的成绩依次是80,86,66,91,67,图2是这个样本的频数分布直方图、平均成绩和标准差.重复上述步骤,再取第二和第三个样本.
第一个样本的平均成绩为78分,标准差为10.1分
图2 图3是根据小明取到的第二和第三个样本数据得到的频数分布直方图.
第二个样本的平均成绩为74.2分,标准差为3.8分
第三个样本的平均成绩为80.8分,标准差为6.5分
图3 思考 图2、3与图1相像吗?平均数以及标准差与总体的接近吗?
发现 不同样本的平均成绩和标准差往往差异较大.原因可能是因为样本太小.
用大一些的样本试一试,继续用简单随机抽样方法,选取两个含有10名学生的样本,图4是根据小明取到的两个样本数据得到的频数分布直方图.
第一个样本的平均成绩为79.7分,标准差为9.4分
第二个样本的平均成绩为83.3分,标准差为11.5分
图4 发现 此时不同样本的平均成绩和标准差似乎比较接近总体的平均成绩78.1分和标准差10.8分.
猜想 用大一些的样本来估计总体会比较可靠一点.
让我们用更大一些的样本试一试,这次每个样本含有40个个体.图5是根据小明取到的两个样本数据得到的频数分布直方图.
第一个样本的平均成绩为75.7分,标准差为10.2分
第二个样本的平均成绩为77.1分,标准差为10.7分
图4 发现 图4中样本的平均成绩和标准差与总体的平均成绩和标准差的差距更小了. 结论 样本大更容易认识总体的真面目. 下面请同学们也用自己的抽样数据分析一下.
四、交流反思
随着样本容量的增加,由样本得出的平均数、标准差会更接近总体的平均数、标准差. 样本大更容易认识总体的真面目.因此,可以通过选取恰当的样本来估计总体.
五、检测反馈
1.某校50名学生的体重记录如下(按学号顺序从小到大排列)(单位:kg)
试用简单的随机抽样的方法,分别抽取5个、15个、30个体重的样本各两个并计算样本平均数和标准差.把它们与总体平均数和标准差作比较,看哪个样本的平均数和方差较为接近.
2.某校九年级(1)班45名学生数学成绩如下(单位:分)
(1)请你用简单的随机抽样方法选取2个样本容量为10的样本,2个样本容量为20的样本,2个样本容量为30的样本,并将你选取的各样本的数据和相应的样本的平均数和标准差填入下表(精确到0.1)
(2)求出九年级(1)班45名学生数学的平均成绩和标准差.分别将表格中不同样本容量的平均数、标准差与总体的平均数、标准差进行比较,从比较中你发现些什么?
六:教学反思:
第四篇:概率教案
一、授课题目
1.4等可能概型(古典概型)
二、目的要求
教学目的:(1)理解基本事件、等可能事件等概念;
(2)会用枚举法求解简单的古典概型问题;
教学要求:要求学生熟练掌握等可能概率, 会计算古典概率
三、重点、难点
教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、授课内容
等可能概型
1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;
2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;
3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型
①所有的基本事件只有有限个;
②每个基本事件的发生都是等可能的; 具有以上两个特点的试验是大量存在的,这种试验称为等可能概型(古典概型)。计算公式:
若事件A包含k个基本事件,即A={ei1}∪{ei2}∪„∪{eik},这里i1,i2,„ik是1,2,„,n中某k个不同的数,则有
PAknA包含的基本事件数
S包含的基本事件数例题1:将一枚硬币抛掷3次。(1)设事件A1为“恰有一次出现正面”,求P(A1)(2)事件A2为“至少有一次出现正面”,求P(A2)。解:(1)我们考虑样本空间:
S2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.而A1={HTT,THT,TTH}.S2中包含有限个元素,且由对称性知每个基本事件发生的可能性相同,故由古典概率的计算公式可得 P(A1)=
(2)由于A2={TTT},于是 P(A2)=1-P(A2)=1-=
当样本空间的元素较多时,我们一般不再将S中的元素一一列出,而只需分别求出S中与A中包含的元素的个数(即基本事件的个数),再由公式求出A的概率。
例题2:一个口袋装有6只球,其中4只白球,2只红球,从袋中取球两次,每次随机的取一只,第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球,这种取球方式叫做放回抽样。试分别就上面的情况求(1)取到的两只球都是白球的概率;(2)取到的两只球颜色相同的概率;(3)取到的两只球中至少有一只是白球的概率。解:放回抽样的情况。
以A、B、C分别表示事件“取到的两只球都是白球”,“取到的两只球都是红球”,“取到的的两只球中至少有一只是白球”。易知“取到两只颜色相同的球”这一事件即时A∪B,而C=B.在袋中依次取两只球,每一种取法为一个基本事件,显然此时样本空间中仅包含有限个元素,且由对称性知每个基本事件发生的可能性相同,由此可计算出事件的概率。
每一次从袋中取球有6只球可供抽取,第二次也有6只球可供抽取。由组合法的乘法原理,共有6×6种取法,即样本空间中元素总数为6×6。对于事件A而言,由于第一次有4只白球可供抽取,第二次也有4只白球可供抽取,由乘法原理共有4×4个元素。同理B中包含2×2个元素。于是
444 P(A)= =
669
P(B)=
221= 669
由于AB=,得 P(A∪B)=P(A)+P(B)= P(C)=P(B)=1-P(B)=
9例题3:将一个骰子先后抛掷2次,观察向上的点数。
问:⑴两数之和是3的倍数的结果有多少种? 两数之和是3的倍数的概率是多少?
⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
分析:建立模型,画出可能出现结果的点数和表
解:由表可知,等可能的基本事件的总数是36种
(1)设“两次向上点数之和是3的倍数”为事件A,事件A的结果有12种,故121P(A)
363(2)设“两次向上点数之和不低于10”为事件B,事件B的结果有6种,故61P(B)
366思考:对于此题,我们还能得到哪些相关结论呢? 变式一:总数之和是质数的概率是多少?
变式二:点数之和是多少时,概率最大且概率是多少?
变式三:如果抛掷三次,问抛掷三次的点数都是偶数的概率,以及抛掷三次得点数之和等于16的概率分别是多少?
例题4:一个口袋内装有大小相同的5个红球和3个黄球,从中一次摸出两个球
(1)共有多少个基本事件?
(2)求摸出的两个球都是红球的概率;(3)求摸出的两个球都是黄球的概率;(4)求摸出的两个球一红一黄的概率。
分析:可用枚举法找出所有的等可能基本事件.
解:(1)分别对红球编号为1、2、3、4、5号,对黄球编号6、7、8号,从中任取两球,有
如下等可能基本事件,枚举如
(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(1,7)、(1,8)
(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)
(3,4)、(3,5)、(3,6)、(3,7)、(3,8)
(4,5)、(4,6)、(4,7)、(4,8)
(5,6)、(5,7)、(5,8)
(6,7)、(6,8)
(7,8)
共有28个等可能基本事件
(2)上述28个基本事件中只有10个基本事件是摸到两个红球(记为事件A)的事件
m105 n2814(3)设“摸出的两个球都是黄球”为事件B,事件B包含的基本事件有3个,m3故P(B)
n28(4)设“摸出的两个球是一红一黄”为事件C,事件C包含的基本事件有15m15个,故P(C)
n28故 P(A)思考:通过对摸球问题的探讨,你能总结出求古典概型概率的方法和步骤吗?
五、授课小结
1.学生反映古典概率比较难求。2.古典概型、等可能事件的概念;
六、布置作业
Page26习题19
第五篇:概率复习
第一章、概率论的基本概念
考点:
事件的关系及运算,概率的公理化定义及其性质,古典概型,条件概率的定义及贝叶斯公式,n重伯努利
试验及二项概率公式。
参考:例1.4、例1.6、例1.26、习题一28
第二章、随机变量
考点:
随机变量的分布函数的概念及性质,概率分布(密度)及两者的性质,分布函数与密度函数的关系,三大离散分布的定义及记号以及相关计算,三大连续分布的定义及记号以及相关计算。
参考:例3.1、例3.15、习题三1
3第三章,随机向量
考点:
二维离散型随机变量的联合概率分布,边缘分布,条件分布,独立的充要条件,二维离散型随机变量的函
数。
参考:例3.1、例3.15、习题三1
3第四章,随机变量的数字特征
考点:
均值、方差的定义及其性质,六大常见分布的均值及方差、计算过程。
参考:习题四1、5。
第五章,大数定律与中心极限定理
考点:
独立同分布中心极限定理,棣莫弗-拉普拉斯中心极限定理。
参考:例5.4、例5.6、第六章 数理统计的基本概念
考点:
简单随机样本的定义,常用统计量,三大统计分布定义及其性质和相关计算(上分位点),正态总体抽样分布定理。
本部分主要考查对概念及性质的理解。特别注意:
若E(X),D(X)2,则E(Xi),D(Xi)
2第七章 参数估计
考点:
矩估计法,极大似然估计法,估计量的评价标准(无偏性及有效性),正态总体均值的区间估计。参考:例7.6、例7.8、例7.9、例7.12