6.3.1等可能事件的概率1教案

时间:2019-05-15 06:02:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《6.3.1等可能事件的概率1教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《6.3.1等可能事件的概率1教案》。

第一篇:6.3.1等可能事件的概率1教案

§6.3等可能事件的概率(1)

教学目标:

1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力

3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣

教学重点:1.概率的意义及其计算方法的理解与应用。

2.根据已知的概率设计游戏方案。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。教学过程:

一、回顾与思考

任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

二、情景引入

一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。(1)会出现哪些可能的结果?

(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?

三、学习新知

1、等可能事件

设一个试验的所有可能结果有n个,每次试验有且只有其中的一个结果出现。如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

2、等可能事件的概率

一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:

P(A)=m n3、目标测试1 _小牛试刀

任意掷一枚均匀骰子。

(1)掷出的点数大于4的概率是多少?

(2)掷出的点数是偶数的概率是多少?

注意:

1、在一次试验中,出现的每种试验结果是等可能的。

2、公式中的m和n。

4、游戏环节:

(1)如下图,盒子里装有三个红球和一个白球,它们除颜色外完全相同。小明从盒中任意摸出一球。请你求出摸出红球的概率?

(2)请同学们分组进行摸球试验,并完成下表

(3)为什么实验的结果和前面同学所求概率相差很大?

5、练习提升

(一):任意掷一枚均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?(3)掷出的点数是7的概率是多少?

(4)掷出的点数小于7的概率是多少?

(二)、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同,从中任意摸出一球,则:

P(摸到红球)=

P(摸到白球)=

P(摸到黄球)=

(三)、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?如果不等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

(四)、将A,B,C,D,E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中。搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?

(五)、有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率。

6、小牛试刀——我来设计

小明所在的班有40名同学,从中选出一名同学为家长会准备工作。请你设计一种方案,使每一名同学被选中的概率相同。小结

1、等可能事件

设一个试验的所有可能结果有n个,每次试验有且只有其中的一个结果出现。如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

2、等可能事件的概率

一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为: 作业

(1)导学案课后学习;(2)作业本54页;

(3)一课一案训练案141页。

第二篇:《等可能事件的概率》教学设计

第九章 概率初步

等可能事件的概率(第1课时)

一、学生起点分析

学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对简单事件发生的可能性能够做出预测,并阐述自己的理由。学生已接触了不确定事件,前面两节课通过活动感受了事件发生的等可能性及游戏规则的公平性,为进一步了解计算一类事件发生可能性的方法、体会概率的意义奠定了知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经体验事件发生的等可能性及游戏规则的公平性,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

概率与我们现实生活的联系非常密切,通过本章的学习不仅能让学生体会到数学与现实生活联系的紧密性,而且也能培养学生的各种能力,特别是通过对数据的收集、整理、分析,锻炼学生的综合实践能力,对培养学生“自主、合作、探究”这种新的学习方式将起到重要的作用。

本节课中体会概率的意义不仅是本章的重点,也是学好本章的关键。一方面可以使学生体会到概率和确定数学一样也是科学的方法,能够有效地解决现实世界中的众多问题;另一方面,也使学生认识到概率的思维方式与确定性思维的差异。学生只有具备了这种随机观念才能明智地应付变化和不确定性,这也是构成在义务教育阶段学习概率的重要原因。本节教学目标如下:

1.知识与技能:通过摸球游戏,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义,根据已知的概率设计游戏方案

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力

3.情感与态度:通过环环相扣的、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣

教学重点:1.概率的意义及其计算方法的理解与应用。

2.根据已知的概率设计游戏方案。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

教学方法:为了充分体现“以学生为主体”的教学宗旨,结合本节课内容主要采取了“自主、合作、探究”的探究式和启发式教学法。

教学手段和教具准备:自制球箱,准备了乒乓球若干,并运用了现代多媒体教学

平台。

三、教学设计分析

本节课共设计了六个教学环节:回顾思考、创设情境,导入新课、学习新知、练习提升、课堂小结、布置作业。第一环节

回顾思考 活动内容:

任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能相同吗?正面朝上的概率是多少?

活动目的:本节课的内容是要学会简单的概率计算的方法,所以在学习新课以前复习有关简单掷硬币正面朝上的概率,为后面的学习打好基础。

实际教学效果:学生基本都能回忆起上面的问题,并能准确回答。第二环节

创设情境,导入新课 活动内容:

一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?

活动目的:培养学生准确表达自己的思维结果的能力,培养学生分析事情发生的可能性,体会事件发生的等可能性,使本节课顺利的进入到下一个环节。

实际教学效果:学生对于引例中的摸球问题畅所欲言,表述自己发现的结论,准确说出所有结果。第三环节

学习新知 活动内容: 1.学习新知

这里我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点? 设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果现。如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。想一想:你能找一些结果是等可能的实验吗? 得出结论

一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:

P(A)=m/n 活动目的:通过小组合作交流讨论,学生能够准确理解何为等可能试验,并且大家共同合作得出求等可能试验中事件A的概率公式。在本环节中有利于培养学生与他人的合作、互助意识,锻炼学生与他人的沟通、协作能力。

实际教学效果:由于问题简单教师应注重给学生更多的展示自己才能的机会.从而调动学生的学习热情,培养学生多动脑的好习惯。从而轻松掌握求在等可能试验中事件A的概率公式。

2.牛刀小试

例:任意掷一枚均匀骰子。

(1)掷出的点数大于4的概率是多少?

(2)掷出的点数是偶数的概率是多少?

解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

(1)掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.21所以P(掷出的点数大于4)==

3(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.31所以P(掷出的点数是偶数)==

62活动目的:由于前面学生刚刚学习概率的相关知识,所以此处练习教材中求掷一枚均匀骰子的问题。从而巩固所学知识,培养学生运用所学知识解决实际问题的能力。活动效果:在前面的准确讲解后,学生能够立刻准确求出本题答案。但在本环节中教师应注重引导学生按照规范形式书写求出概率的过程,注意强调所有结果出现的等可能性。第四环节

练习提升

活动内容:教师首先表扬学生本节课学习中同学们表现都非常好,大家团结合作,为了鼓励大家,老师请同学们吃水果大餐,6种水果代表6道题,请大家选题回答。突出重点,突破难点。

活动效果:由于以吃水果的形式进行选题回答,同学们答题积极性非常高,争先恐后,强着回答,课堂气氛空前活跃。5道题设置由浅入深,锻炼同学们运用概率去解决身边出现的问题。

(一)桔子

一副扑克牌,任意抽取其中的一张,①P(抽到大王)=。

②P(抽到3)=

。③P(抽到方块)=。

请你解释一下,打牌的时候,你摸到大王的机会比摸到3的机会小。

(二)苹果

一道单项选择题有A、B、C、D四个备选答案,当你不会做的时候,从 中随机地选一个答案,你答对的概率是。

(三)草莓

将A,B,C,D,E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中。搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?

(四)葡萄

任意掷一枚均匀的骰子。

①P(掷出的点数小于4)=

。②P(掷出的点数是奇数)=

。③P(掷出的点数是7)=

。④P(掷出的点数小于7)=。

(五)香蕉

有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:

(1)抽出标有数字3的纸签的概率;

(2)抽出标有数字1的纸签的概率;

(3)抽出标有数字为奇数的纸签的概率。

(六)梨

小明所在的班有40名同学,从中选出一名同学为家长会准备工作。请你设计一种方案,使每一名同学被选中的概率相同。第五环节

课堂小结 设计说明:

师生互相交流总结概率的计算方法和根据已有的概率设计游戏的方法。鼓励学生结合本节课的学习谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括:

1.概率的计算方法;

2.根据已有的概率设计游戏的方法; 3.常见的概率问题; 4.学习本节课的感想。第六环节

布置作业

预习下一课

四、教学设计反思

1.课堂上学生对于摸球后再放回这一前提了解的不够清晰,这给本节课的问题分析带来了一定的困难,也给本节课的实验操作带来了一定的错误隐患。建议教学时可以在引例提出时,学生分析问题的同时演示课件中的摸球游戏,使“放回”这一重要原则在学生的头脑中留下深刻的印象,为后边的问题分析与实验操作铺平道路。也可以在实验之前演示录象中的学生的正确操作,教师可以对学生的“摇晃、搅拌”的行为给以强调或表扬,来加深学生对这一问题的理解,使实验能够顺利的完成。

2.本节课的许多学生思考的地方,教师一定给学生讨论、研究的时间。在学生充分讨论以后教师再给以必要的问题提示,这样才能加深学生的印象,更好的完成本节课的教学目标。

3.本节课设置了多个不同层次的问题,教师在表扬优等生敢于接受挑战、敢于迎难而上的精神的同时一定不要忽视学习有困难的学生的点滴进步。

第三篇:等可能条件下的概率-教案

立德 践行 ◆ 慎教 善导

14-15学 立德 践行 ◆ 慎教 善导

三、变式拓展

在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如下图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.(1)试问小球通过

第四篇:《随机事件的概率》教案

《随机事件的概率》教案

一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体

四、教学过程

情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义

问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1.频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2.试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P。

概率的性质

由定义可知0≤P≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

填写表中击中靶心的频率;

这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

课堂练习,巩固提高

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是

A.必然事件B.随机事件

c.不可能事件D.无法确定

2.下列说法正确的是

A.任一事件的概率总在内

B.不可能事件的概率不一定为0

c.必然事件的概率一定为1

D.以上均不对

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

完成上面表格:

该油菜子发芽的概率约是多少?4.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

第五篇:《随机事件的概率》教案

《随机事的概率》教案

一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事,不可能事,随机事的概念;理解随机事的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事、必然事伯、不可能事的概念判断给定事的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体

四、教学过程

情境设置,引入题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事的概念。探索研究,理解事

问题1:下面有一些事,请同学们从这些事发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,的张标签中,得到1号签”。

给出定义:

事:是指在一定条下所出现的某种结果。它分为必然事、不可能事和随机事。

问题2:列举生活中的必然事,随机事,不可能事。

问题3:随机事在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义

问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事A的概率:在大量重复进行同一试验时,事A发生的频率/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事A的概率,记作P。

概率的性质

由定义可知0≤P≤1,显然必然事的概率是1,不可能事的概率是0。

频率与概率的关系

①一个随机事发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事时某个事是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事和确定事可以看成随机事的极端情况。③随机事的频率是指事发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条下进行射击,结果如下表所示:

填写表中击中靶心的频率;

这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

堂练习,巩固提高

1将一枚硬币向上抛掷10次,其中正面向上恰有次是

A必然事B随机事

不可能事D无法确定

2下列说法正确的是

A任一事的概率总在内

B不可能事的概率不一定为0

必然事的概率一定为1

D以上均不对

3下表是某种油菜子在相同条下的发芽试验结果表,请完成表格并回答题。

完成上面表格:

该油菜子发芽的概率约是多少?4生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

下载6.3.1等可能事件的概率1教案word格式文档
下载6.3.1等可能事件的概率1教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    随机事件及其概率教案

    课题随机及其概率分布教案 备课时间:01—23 上课时间: 主备: 审核: 班级 姓名: [学习目标]:(1)理解随机变量的概念及0-1分布,初步理解随机变量的分布量 (2)高考B级要......

    3 等可能事件的概率(第2课时)

    3 等可能事件的概率(第2课时) 一、教学目标 1.知识与技能:通过小组合作、交流、试验,理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏; 2.过程与方法:再次经历......

    第1课时 随机事件的概率教案

    好成绩,从思想教育开始! 第1课时 随机事件的概率 基础过关题 1.随机事件及其概率 必然事件:在一定的条件下必然发生的事件叫做必然事件. 不可能事件:在一定的条件下不可......

    随机事件的概率教案教案 - 副本

    随机事件的概率 一、教学目标 1了解随机事件`必然事件`不可能事件的概念; 2 了解随机事件在大量重复试验时,它的发生所呈现出的规律性; 3 了解概率的统计定义及概率的定义; 4 利......

    概率统计教案1

    第一章概率论的基本概念 1.确定性现象: 在一定条件下必然发生的现象. 2.统计规律性: 在个别试验或观察中可以出现这样的结果,也可以出现那样的结果,但在大量重复试验或观察中......

    相互独立事件同时发生的概率教案

    相互独立事件同时发生的概率 ----相互独立事件及其同时发生的概率 【教学目的】 1.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率;2.通过对概率知......

    随机事件的概率说课稿

    一、教材分析 (一)本节教材的地位及前后联系 概率是高二数学课本(B)第11章。 它既是排列组合的具体应用和延续。 也是高三我们学习概率统计知识的基础。 《随机事件的概率》......

    随机事件及其概率小结

    随机事件及其概率小结 一、 知识点网络图 随机事件及其概率样本空间、样本点、事件的定义事件的关系及运算事件的关系及运算(、=、、、-、互斥、对立)算律(重点:对偶率的灵合......