“2011年诺贝尔医学或生理学奖”解读

时间:2019-05-12 15:26:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“2011年诺贝尔医学或生理学奖”解读》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“2011年诺贝尔医学或生理学奖”解读》。

第一篇:“2011年诺贝尔医学或生理学奖”解读

“2011年诺贝尔医学或生理学奖”解读

2011年诺贝尔医学或生理学奖,授予了:布鲁斯?巴特勒(Bruce A. Beutler)、朱尔斯?霍夫曼(Jules A. Hoffmann)和拉尔夫?斯坦曼(Ralph Steinman)三位得主。Bruce

A. Beutler和Jules A. Hoffmann,获奖理由是“先天免疫激活方面的发现”;Ralph M. Steinman,获奖理由是“发现树枝状细胞及其在获得性免疫中的作用”。三位科学家没有在一起共事,而依相关论文发表先后,斯坦曼最先,1973年;霍夫曼其次,1996年;博伊特勒最后,1998年。三位诺奖得主发现的免疫系统激活的关键原理,彻底革新了我们对免疫系统的认识,改变了对免疫系统的理解。

1健康防御的系统──免疫系统

生活中病原微生物(细菌、病毒、真菌和寄生虫)时时威胁着我们,大多数人们拥有强有力的防御机制所以未能患上疾病。这是因为我们奇妙的人体配备了有力的健康防御系统──免疫系统。人体的“健康防御系统”共有两道防线,首先是先天性免疫,又叫自然免疫。先天性免疫反应会在人体被病毒、细菌、寄生虫感染后迅速启动,主要作用是在“入侵者”进入人体时作出第一反应,通过发炎等手段消灭入侵微生物,防止它们的进一步侵害。

一旦这道防线被攻破,人体防御系统的下一道防线,立即“进入战斗状态”,这就是适应性免疫,又叫获得性免疫。这道防线会“集中火力”消灭已被感染的细胞,消除它们对人体健康的威胁。

人类和其他动物通过免疫应答使自身免受细菌和其他微生物的攻击,长期以来,科学家们一直在探寻免疫应答的“守护者”。人体免疫系统的构造在20世纪已经被逐步揭示,比如抗体的结构构成、T细胞识别外来物质的原理等。但是,在Bruce A. Beutler;Jules

A. Hoffmann和Ralph Steinman的相关研究发现之前,先天和获得性免疫的激活以及先天和获得性免疫的间的“互动”及调控机制一直扑朔迷离。

2Jules A. Hoffmann和Bruce A. Beutler发现先天性免疫传感器

1996年,Jules A. Hoffmann做了开创性的发现,他和他的同事们研究了果蝇是如何对抗感染的。他们研究了携带几种不同基因包括Toll基因(该基因参与胚胎发育,由1995年诺贝尔生理医学奖获得者ChristianeNüsslein-Volhard发现)突变的果蝇。当Jules

A. Hoffmann用细菌或真菌感染果蝇时,他发现Toll突变沉默,这是因为其不能组织有效防御。他得出结论:Toll基因产物参与了病原微生物的传感,为了防御病原微生物应当激活Toll基因。

Bruce A. Beutler曾一度探寻可结合细菌产物的受体──脂多糖(LPS),它可导致感染性休克──一种参与免疫系统过度反应的威胁生命的状态。1998年,Bruce A. Beutler及其同事们发现,对LPS耐受的小鼠携带一个与果蝇Toll基因十分相似的基因。这种Toll样受体(TLR)被证明是一种难以理解的LPS传感器,当与LPS结合时,可激活导致炎症反应的信号通路,如果LPS剂量过大,可导致感染性休克。上述发现显示,当遇到病原微生物时,哺乳动物和果蝇利用相似的分子激活先天性免疫。至此,先天性免疫传感器最终被发现。

Bruce Beutler和Jules Hoffmann发现人体许多细胞中都有一种重要蛋白质,这就是“Toll样受体(TLR)”。该蛋白质可识别不同病原体,并在细菌入侵时快速激活先天免疫反应。

能识别微生物并激活先天性免疫的受体蛋白质的发现,揭示了身体免疫应答过程的第一步,也掀起了先天性免疫研究的热潮。目前研究人员在人和小鼠中发现了大约10余种不同的TLR,每种TLR可识别微生物中常见的特定类型的分子。不同类型TLR基因突变可导致感染或慢性炎症性疾病风险升高。

3Ralph Steinman发现控制获得性免疫的新型细胞

1973年,Ralph Steinman发现了一种被其命名为树突细胞的新型细胞。他推测这种细胞在免疫系统中有重要作用,并检测了树突细胞是否可激活T细胞──一种在获得性免疫中发挥关键作用并形成对不同物质具有免疫记忆的细胞。在细胞培养实验中,他发现树突细胞的存在导致T细胞对外来物质的活跃反应,具有激活T细胞功能的独特作用。这些发现最初受到怀疑,但Ralph Steinman的后续工作证明,树突细胞这有着激活并调节适应性免疫系统的本领:会激发T淋巴细胞,从而启动适应性免疫系统,引起一系列反应,如制造出抗体和“杀手”细胞等“武器”,杀死被感染的细胞以及“入侵者”。

Ralph Steinman和其他科学家的进一步研究转向了回答一个问题,即获得性免疫系统如何决定当遇到不同物质时是否应当被激活。源自先天性免疫应当并被树突细胞感知的信号被认为可控制T细胞激活。这就使免疫系统有可能对抗病源微生物而避免攻击内源性分子。

4“合力”成果──免疫反应的激活机制的意义

三位获奖者的研究成果构成“合力”,揭示免疫反应的激活机制,使人们对免疫系统的理解发生“革命性变化”。

在揭示了人类免疫应答激活的先天和获得性阶段。为我们认识免疫系统的激活和调节机制提供了新视角,有助于我们理解为何免疫系统可攻击我们自身的组织。使得发展预防和治疗疾病的成为可能。在预防和治疗感染、癌症和炎症性疾病提供了新线索,开拓了新方法、新路径。

目前用来治疗自身免疫疾病的新的药物,很多现在正在开发的免疫治疗癌症的药物都是利用了他们所发现的这些机理和原理。如:传统的疫苗的作用在于预防,而以3人所获研究成果为基础,新型疫苗着眼于以新颖手段治疗癌症,获称“治疗性疫苗”,旨在调动人体免疫系统对肿瘤发起“攻击”;再如:他们的成果有助于治疗一些炎症类疾病,如风湿性关节炎。

近十年诺贝尔生理学或医学奖得主及其主要成就 2011年,美国科学家布鲁斯·巴特勒、卢森堡科学家朱尔斯·霍夫曼和加拿大科学家拉尔夫·斯坦曼。他们发现了免疫系统激活的关键原理,这使人们对人体免疫系统的认识有了革命性的改变。

2010年,英国科学家罗伯特·爱德华兹。他创立了体外受精技术,因此又被誉为“试管婴儿之父”。医学统计显示,世界上约有10%的夫妇有生育问题,而体外受精技术可以帮助其中绝大多数夫妇实现有自己后代的梦想。至今,全球已有400多万人通过试管婴儿技术出生,其中许多人以自然受精方式生育了后代。

2009年,美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克。他们发现了端粒和端粒酶是如何保护染色体的,这一发现解决了一个生物学的重要课题,即染色体在细胞分裂过程中是怎样实现完全复制的,同时还能受到保护不至于发生降解。

2008年,德国科学家哈拉尔德·楚尔·豪森及法国科学家弗朗索瓦丝·巴尔-西诺西和吕克·蒙塔尼。豪森发现了人乳头状瘤病毒(HPV),这种病毒是导致宫颈癌的罪魁祸首。巴尔-西诺西和蒙塔尼的获奖成就则是发现了艾滋病病毒(HIV)。

2007年,美国科学家马里奥·卡佩基、奥利弗·史密斯和英国科学家马丁·埃文斯。他们的一系列突破性发现为“基因靶向”技术的发展奠定了基础,使深入研究单个基因在动物体内的功能并提供相关药物试验的动物模型成为可能。

2006年,美国科学家安德鲁·法尔和克雷格·梅洛。他们发现了核糖核酸(RNA)干扰机制,这一机制已被广泛用作研究基因功能的一种手段,并有望在未来帮助科学家开发出治疗疾病的新方法。

2005年,澳大利亚科学家巴里·马歇尔和罗宾·沃伦。他们发现了导致人类罹患胃炎、胃溃疡和十二指肠溃疡的罪魁——幽门螺杆菌,革命性地改变了世人对这些疾病的认识。2004年,美国科学家理查德·阿克塞尔和琳达·巴克。他们在气味受体和嗅觉系统组织方式研究中作出贡献,揭示了人类嗅觉系统的奥秘。

2003年,美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德。他们在核磁共振成像技术上获得关键性发现,这些发现最终导致核磁共振成像仪的出现。

2002年,英国科学家悉尼·布雷内、约翰·苏尔斯顿和美国科学家罗伯特·霍维茨。他们为研究器官发育和程序性细胞死亡过程中的基因调节作用作出了重大贡献。

第二篇:诺贝尔生理学奖课程论文

课程名:诺贝尔生理学奖史话 课堂号:1 任课教师:张铭 学号:2012213815 姓名:袁生

诺贝尔生理学或医学奖中的重大转折发现

——中国人在生命科学领域的诺奖级工作

摘 要:毋庸置疑,诺贝尔奖是自然科学领域举世瞩目的国际性大奖,代表了自然科学界的最高水平。目前世界上还没有哪一种自然科学奖项,能比诺贝尔奖更受人关注,更具名气,更具权威性,一年一度的诺贝尔奖,代表了人类科学发展的最高水平。本文主要讲述诺贝尔生理学或医学奖历史上一些重大转折发现,以及中国人在生命科学领域的诺奖级工作。

关键词:诺贝尔奖;自然科学奖项;重大转折发现;生理学或医学;诺奖级工作。

诺贝尔奖是以瑞典著名的化学家、硝化甘油炸药的发明人阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产(3100万瑞典克朗)作为基金创立的。诺贝尔奖分设物理、化学、生理或医学、文学、和平五个奖项,以基金每年的利息或投资收益授予前一年世界上在这些领域对人类作出重大贡献的人,1901年首次颁发。诺贝尔奖包括金质奖章、证书和奖金。1968年,瑞典国家银行在成立300周年之际,捐出大额资金给诺贝尔基金,增设“瑞典国家银行纪念诺贝尔经济科学奖”,1969年首次颁发,人们习惯上称这个额外的奖项为诺贝尔经济学奖。诺贝尔生理学或医学奖由瑞典首都斯德哥尔摩的医科大学卡罗琳学院负责评选,每年10月颁布获奖人,颁奖仪式于12月10日(诺贝尔逝世的周年纪念日)举行,大会由50名选举出来的卡罗琳医学院名教授组成,是为了表彰在生理学或医学领域有重要的发现或发明的人。该奖项于1901年首次颁发。诺贝尔生理学或医学奖的颁奖历史主要分为三个阶段:第一阶段(1901~1928)主要为应用医学方面,其中传染病的研究占有突出地位。第二阶段(1929~1957)以维生素和抗生素发现为标志的现代医学与控制传染病的应用医学平分秋色。第三阶段(1958~)以分子生物学、免疫学和神经科学为代表的基础研究占据主导地位。

1901年首届诺贝尔生理学或医学奖授予了德国医学家、细菌学家和血清学家埃米尔·阿道夫·冯·贝林,以表彰他在血清疗法和被动免疫上的研究尤其是在对白喉治疗的贡献,由此开辟了医学领域研究的新途径,也因此使得医生手中有了对抗疾病和死亡的有力武器”。埃米尔·阿道夫·冯·贝林的血清疗法揭开了人类对抗疾病的新篇章。19世纪,当时极为凶险的传染病—白喉,是威胁儿童健康的主要杀手之一,由于没有可靠的治疗方法,白喉的致死率惊人。上世纪20年代,仅美国就有10万到20万人发病,死亡15000人,其中主要为儿童。欧洲的情况更为严重,每年大约有50000人死于该病。贝林从1891年开始他开始研究白喉的抗毒素,起初,贝林试图采取灭菌方式杀死白喉杆菌,但没有成功。不过贝林和他的同事北里柴三郎发现将患过白喉的白鼠血清注射入新患白喉的老鼠体内,新感染白喉的老鼠奇迹般地痊愈了,这说明感染过白喉的老鼠体内有某种对抗白喉杆菌毒素的物质,贝林对此激动不已,并将这种物质命名为“抗毒素”。这一理论已经被动物实验成功证实,但尚未有应用于人体的先例。终于在1891年德国柏林的一个患病小女孩身上成功得到证实。贝林的这一研究不仅开创了传染病的新疗法,为白喉患者带来了福音,还拉起了生命科学领域应用医学研究的序幕,此后很长一段时间在应用医学领域,尤其是在传染病等威胁人类生命方向上,诺贝尔奖层出不穷,促进了人们对重大疾病的控制,在生理学或医学上具有划时代意义。

1945年弗莱明、钱恩和弗洛里三人由于发现了青霉素使青霉素进入了人类生活,挽救了成千上万人的生命,使人类与疾病的斗争进入了一个全新的时代,为增进人类的健康做出了巨大贡献。为此,他们三人分享了当年的诺贝尔生理学或医学奖。1928年英国人弗莱明在培养葡萄球菌的平板培养皿中发现,在污染的青霉菌周围没有葡萄球菌生长,形成一个无菌圈,后来人们称这种现象为抑菌圈。他认为这是由于青霉菌分泌一种能够杀死葡萄球菌或阻止葡萄球菌生长的物质所致,他把这种物质称为青霉素。但是,弗莱明的这一重要发现在当时并没有引起人们的重视。既然青霉素可以杀死葡萄球菌,就有可能杀死能使人致病的细菌,直到1940年,英国的病理学家佛罗理和德国的生物化学家钱恩通过大量实验证明青霉素可以治疗细菌感染,具有治疗作用,并建立了从青霉菌培养液中提取青霉素的方法。随后医生第一次用青霉素救治一位患败血症的危重病人,使当时无法治疗的败血症病人恢复了健康。于是青霉素一时成了家喻户晓的救命药物,当时的价格比黄金还要贵。青霉素作为二战中的三大发现之一,具有重大的意义,作为医药界的伟大发现,作为第一种光谱抗生素,挽救了许多人的生命,对人类的健康做出了卓越贡献。青霉素的发现,标志着人类与疾病的抗争又得到了一次巨大的飞跃,同时又一次有力的告诉我们科学需要合作,这次的诺贝尔生理学或医学奖是对科学的合作与分享的有力认可,在诺贝尔生理学或医学奖历史上具有重大的意义。

由于发现DNA分子双螺旋结构及其对生物中信息传递的重要性,沃森、克里克和威尔金斯三人分享了1962年的诺贝尔生理学或医学奖。1953年2月,沃森、克里克通过维尔金斯看到了富兰克琳在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感。他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤总是与胸腺嘧啶配对、鸟膘呤总是与胞嘧啶配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。克里克从一开始就坚持要求在4月25日发表的论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话。他认为,如果没有这句话,将意味着他与沃森“缺乏洞察力,以致不能看出这一点来”。在发表DNA双螺旋结构论文后不久,《自然》杂志随后不久又发表了克里克的另一篇论文,阐明了DNA的半保留复制机制。DNA双螺旋结构的提出开启了分子生物学时代。分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,“生命之谜”被打开,人们逐渐清楚地了解遗传信息的构成和传递的途径。生命科学由此进入伟大的分子生物学时代,开启了现代基础生物学的研究。

中国人对生命科学的发展也做出了重要贡献,其中有的甚至与诺贝尔生理学或医学奖仅一步之遥。自西方生命科学与中国古老的生物医学相交融以来,涌现了大量生命科学领域的风云人物,他们的主攻科研方向代表着最热门的技术领域,他们一直试图解决人类面临的最困难的科技问题。下面简要介绍一些中国人在生命科学中的诺奖级工作。

屠呦呦发现了青蒿素,获得了2011拉斯克奖国际上公认仅次于诺贝尔生理学或医学奖的大奖。这是迄今中国生物医学界在国际上获得的最高级别大奖。1997年以来的诺贝尔生理学或医学奖获得者中,近一半是拉斯克奖得主。屠呦呦获得的是临床医学奖项,获奖理由是“发现青蒿素一种用于治疗疟疾的药物,挽救了全球,特别是发展中国家数百万人的生命”。但是很遗憾,最终并没有获得诺贝尔生理学或医学奖,对此,国人争议很多。

同样,我国医药界原创—砒霜可以治疗白血病是由我国科学家张庭栋首次发现,起到了奠基的作用。为白血病患者带来了福音,与屠呦呦同获2011年GSK生命科学杰出成就奖。这一工作,也可堪称诺奖级的工作。

中国人对生命科学的发展也起到了巨大的作用,但是由于种种原因,没能获得诺贝尔奖,甚是遗憾。虽然获得诺贝尔奖是对一个科学家的最大认可,但是我们并不能一味的以诺奖来论英雄,生命科学史上依然有很多杰出的科学家做了伟大的贡献,可是依然与诺贝尔奖擦肩而过,这里的原因是多方面的。这些伟大的科学家,即使没有获得诺奖,但也依然被历史所铭记。

21世纪,我们进入了信息爆炸时代,生物科学的发展呈现出巨大的潜力,生物科学与人类生存、人民健康、社会发展密切相关,例如,体细胞克隆哺乳动物技术的突破、人类基因组计划的实施、干细胞研究的进展等,我们相信,21世纪是生物科学的世纪,生物学的发展必将给人类发展带来翻天覆地的变化。同时,我国科技实力显著提高,飞速发展的中国生命科学,问鼎诺贝尔生理学或医学奖,指日可待!加油吧!青年们!

参考文献:1诺贝尔奖 http://baike.baidu.com/view/6170.htm 2“血清疗法”揭开对抗疾病的新篇章 赵承渊 发明与创新(综合科技)2011-10-01 期刊

3有感于青霉素的发现 薛依群 中国国防报 2008-08-28 报纸

第三篇:解读2013年诺贝尔物理学奖

解读2013年诺贝尔物理学奖:何为希格斯粒

2013-10-09中国文化传媒网

2013年诺贝尔物理学奖揭晓。

新浪科技讯10月8日讯 2013年诺贝尔物理学奖授予彼得·W·希格斯(Peter W.Higgs)和弗朗索瓦·恩格勒(Francois Englert),以表彰他们对希格斯玻色子(又称“上帝粒子”)所做的预测。那么,到底什么是希格斯玻色子呢? 希格斯粒子是一种亚原子粒子,也就是说,理论上认为它应当是构成宇宙的最基本组成部件之一。但是它仍然有待实验观测证实。科学家们提出的物理学标准模型预言了这种粒子的存在,其作用是解释为何其它粒子会拥有质量。根据这一理论,在宇宙大爆炸之后,一种看不见的力,即希格斯场和与之相对应的粒子 ——希格斯-玻色子一同形成。正是这个场赋予其它基本粒子以质量的属性。

为何这一粒子如此重要?

希格斯场赋予整个宇宙中其它粒子以质量的方式可以用游泳者在水池中受到的水的阻力来做比喻。如果粒子没有质量,它们便可以在宇宙中以光速前进,因为质量的本质便是对物体改变其速度的制约性。

这种粒子最早是什么时候被提出来的?

有关这一粒子的理论最早是在1964年由6位物理学家共同提出来的,其中就包括英国爱丁堡的皮特•希格斯教授。他们当时提出这一粒子的目的就是为了解释质量的起源。理论上,这一粒子的存在将正好补全描述整个宇宙如何运行的物理学标准模型的缺陷,因此它便显得尤其重要。

如何对其进行搜寻?

欧洲核子中心的大型强子对撞机(LHC)是人类有史以来建造的最强大的粒子加速器,它的工作原理是将两束质子流以接近光速的速度迎头相撞,在此过程中得到其它粒子。

在1989年至2000年之间,科学家们也曾使用同样位于欧洲核子中心的另一台加速器LEP进行搜寻工作,而由于经费不足被关停之前,美国的Tevatron加速器也进行过对这一神秘粒子的搜寻工作。

科学家们如何能知道自己究竟是否发现了这样的粒子呢? 如果在LHC加速器中进行的数以十亿计的对撞实验中真的产生了希格斯-玻色子,根据预测,它应当是不稳定的,会迅速衰变为更加稳定,质量更小的粒子。物理学家们需要对这些衰变产物进行分析,并且通过分析来推断这种被称为“上帝粒子”的神秘粒子是否存在。在分析过程中,希格斯粒子是否存在会从数据图形的峰值中体现出来。

六点重大影响: 1.揭开质量起源之谜

物体的质量是怎么来的?这个问题一直困扰物理学界,而希格斯玻色子恰恰被认为与宇宙中一切物体的质量起源有关。希格斯玻色子与一种场有关,那就是所谓的希格斯场,理论上认为这种场充斥着整个宇宙。当宇宙中的其它粒子在这一场中运行时便获得了质量的属性。这就有点像是大家都在一个游泳池里游泳,然后身上都会被打湿,在这里,被水打湿就像是物体获得质量一样。

美国哈佛大学物理学家杰奥•哥斯达(Joao Guimaraes da Costa)表示:“希格斯粒子的机制让我们能够理解粒子获得质量的途径和方式。” 哥斯达是去年欧洲核子中心宣布疑似希格斯粒子发现时,大型强子对撞机(LHC)所属ATLAS探测器设备的标准模型召集人。他说:“如果没有这种机制,那 么所有的一切物体都将失去质量。”

确认此次发现的粒子确实是希格斯粒子将证明我们设想的粒子获得质量属性的方式是正确的。美国加州理工学院物理学教授玛利亚•斯皮罗普鲁(Maria Spiropulu)表示:“这项发现从量子层面支持了我们对于质量来源的看法,而这正是我们当初建造大型强子对撞机的目的。这是一项无与伦比的成就。”

而后,这将进一步为一个更深层次的问题提供解决的线索,那就是:为什么这些粒子拥有这一质量数值?这个值是如何确定的?对此,哈佛大学物理学家 丽萨•兰德尔(Lisa Randall)表示:“这是一个大得多的问题。确认这的确是希格斯粒子只是整个过程的第一步,此后我们才能更往前走,这两者之间是相互联系的。”

2.完善标准模型 标准模型是当代粒子物理学的基石,它描述了整个宇宙中所有的粒子。所有被标准模型所预言的粒子此前都已经被找到了,除了希格斯粒子。就在去年宣布初步结果时,欧洲核子中心ATLAS实验设备科学家乔纳斯•斯兰德伯格(Jonas Strandberg)就曾表示:“这是标准模型中缺失的一环,因此如果这一发现得到最终确认,那么它将最终证明我们目前的认识是正确的。”

到目前为止,科学家们所发现的这一疑似希格斯粒子似乎和标准模型中预言的性质相吻合。但即便如此,标准模型本身也并不完整:例如它没有包括引力,也没有将被认为占据整个宇宙物质总量约98%的暗物质成分考虑进去。

美国费米国家实验室CMS中心的物理学家帕提•麦克布雷德(Patty McBride)在上周四表示:“即便有证据清晰地证明目前我们新发现的这一粒子确确实实就是标准模型所预言的希格斯玻色子,即便如此我们对宇宙的认识仍然模糊不清。”他说:“我们仍然不能理解为何引力如此微弱,我们还要面对巨大的暗物质的存在。不过,对于这一已经有48年历史的经典理论来说,迈出了完善的第一步仍然不失为一件令人高兴的事。”

3.电弱相互作用

确认希格斯粒子还将对电弱相互作用的构建产生重要影响。这种作用是对电磁作用与弱相互作用的统一描述,这两者都是自然界的基本力类型之一。电磁作用描述带电粒子之间的相互作用,而弱相互作用则描述放射性衰变过程。

自然界中所有力的作用都和某种粒子有关。比如与电磁力有关的粒子是光子,这是一种质量为零的特殊粒子。而弱相互作用力则和名为W和Z的玻色子有关,这两种粒子都拥有很高的质量值。而所有这些粒子的质量来源,便被认为是希格斯玻色子的作用造成的。

欧洲核子中心的斯兰德伯格表示:“如果引入希格斯场的概念,那么W和Z玻色子就会和这个场混杂在一起,在这一过程中它们便获得了质量。”他说:“这解释了为何W和Z玻色子会有质量,并将电磁作用和弱相互作用两种基本力统一了起来,构成电弱相互作用。”

4.超对称理论

超对称理论也将受到希格斯粒子发现的影响。这一理论认为任何一种已知的粒子都有一个“超级伙伴”粒子,这种伙伴粒子拥有轻微差异的性质。超对称理论拥有很大的吸引力,因为它可以统一自然界中的其它基本作用力,甚至有希望揭开暗物质构成之谜。然而到目前为止这一理论的前景黯淡,科学家们只找到了和标准模型预言的希格斯粒子性质极其相似的粒子,但是却没有能发现任何和超对称粒子有关的线索。

5.大型强子对撞机

大型强子对撞机(LHC)是世界上最大的粒子加速器。这一耗资约100亿美元的设备率属于欧洲核子研究中心(CERN),其目的是创建地球上能级最强大的粒子加速器设施。而其中找出希格斯玻色子则被列为了该设备的最优先目标之一。此次最新宣布的结果为LHC此前的结果提供了强有力的证明,也是对此前一直在这里为达成这一目标而忘我工作的物理学家们所取得丰硕成果的最好证明。

斯皮罗普鲁在去年的一份声明中表示:“这项发现从量子层面支持了我们对于质量来源的看法,而这正是我们当初建造大型强子对撞机的目的。这是一项无与伦比的成就。”他说:“科学家们已经等待了整整一代人的时间,为的就是这一刻。来自全世界各地大学和研究机构的粒子物理学家,工程师和技术人员们已经为了达成今天的这一成就奉献了数十年的辛勤工作。现在是时候让我们暂时停下脚步,回过头去审视这项发现的意义了,然后再继续进行海量的数据收集和分析工作。”

希格斯玻色子最早是在1964年由英国物理学家皮特•希格斯和同事们提出的。而这个名字的后半部分则是为了纪念杰出的已故印度物理学家和数学家玻色,他与爱因斯坦一同给出了玻色子的定义。玻色子是一类基本粒子,主要包括胶子和引力子等。其负责传递费米子之间的相互作用,如夸克,电子和中微子等等。费米子是宇宙中的另外一种基本粒子类型。

6.宇宙的命运

希格斯玻色子的确认将为科学家们开启一扇大门,让他们得以进行此前无法进行的一些计算。其中一些计算的结果有关宇宙的命运。有一种观点认为宇宙将在未来数十亿年内毁灭。

在进行这样的计算时,希格斯玻色子本身的质量是一个非常关键的参数,它预示了时空的未来命运。目前的测量值显示,希格斯玻色子的质量约为质子的126倍,这一质量值几乎已经处在了一个临界点上,它将有可能让宇宙在未来数十亿年内走向毁灭。

约瑟夫•林肯(Joseph Lykken)是美国费米国家实验室的物理学家,他表示:“计算的结果告诉我们,在数十亿年之后宇宙将可能面临灾难。”他说:“这或许意味着我们所生活于其中的这个宇宙本身存在着内在的不稳定性,在数十亿年之后这一切都将归于瓦解。”

基本粒子质量之源

若没有希格斯粒子,其他基本粒子就会仍以光速运行,宇宙将仍然是一锅沸腾的基本粒子汤,不能组成物质,生命无从谈起希格斯粒子究竟是什么?为什么找到它如此重要? 早在2000多年前,人类便开始追问,我们所生活的世界是怎样形成的?从德谟克利特的“原子说”到如今被科学家普遍接受的标准模型理论,从朴素的形而上学概念到标准模型所预言的粒子陆续被证实,人类似乎越来越接近这一问题的答案。

在标准模型里,宇宙由62种不可再分的基本粒子构成,通过强力、弱力及电磁力这三种基本作用力组合成各种复合粒子,进而构成物质世界。基本粒子可以分为两大类:自旋为半整数的费米子(fermion)和自旋为整数的玻色子(boson)。费米子是构成物质“实体”的粒子,也称之为物质粒子,而玻色子则传递基本相互作用,也可称为载力粒子。

然而在标准模型建立过程中,有一个问题却一直困扰着科学家:按照标准模型理论,基本粒子并没有质量,但实验结果却又清楚表明,除了光子以外的基本粒子都是有质量的。

1964年,希格斯等人提出了“希格斯机制”的概念,在理论上解决了这个问题。希格斯们认为宇宙间遍布“希格斯场”,基本粒子在与希格斯场的相互作用下获得了质量,而形成希格斯场的就是一种新的粒子,被命名为希格斯粒子。

根据对希格斯粒子性质的预言,希格斯粒子的自旋为零,是一种玻色子,所以又把希格斯粒子称为希格斯玻色子。

希格斯理论提出,在宇宙诞生的最初,并没有希格斯粒子的存在,其他的各种基本粒子都如光子一般,以光速横冲直撞。宇宙诞生十几秒后,希格斯粒子 诞生,形成了“希格斯场”。除了光子,其他的基本粒子与希格斯粒子发生碰撞后,就如同轻巧的棉花吸饱了水分一般,获得了质量,而速度就慢下来了。

慢下来的基本粒子“夸克”在强相互作用下,抱团组成了质子、中子等粒子,质子和中子又组成了原子核,原子核与电子在电磁力作用下又形成了原子,原子构成分子,由此形成了我们所见到的大千世界。

如果没有希格斯粒子,其他的基本粒子就会仍然以光速运行,不能聚合在一起,我们的宇宙将仍然是一锅沸腾的基本粒子汤,根本不能组成物质,生命也无从谈起。

希格斯玻色子的存在是希格斯机制的必然结果之一,假若实验证实希格斯玻色子存在,则可给予希格斯机制极大的肯定。更重要的是,它的发现弥补了标准模型的缺漏,奠定了标准模型的基础。

由于希格斯粒子一直未被发现,这些重要的问题一直悬而未决。这个标准模型理论预言的最后一个粒子便一直成为科学家们苦苦追求的目标。

等等,万一希格斯理论被证明是错误的,希格斯粒子根本就不存在呢? 曾获诺贝尔奖的著名粒子物理学家莱德曼表示,如果这样,标准模型理论将被推翻,至少需要进行修改。他表示,“这就像哥伦布启程去寻找印度群岛一样,他和他的信徒们相信,如果没有达到目的,他也会发现一些别的东西,这些东西可能会更有意义。”

在这个意义上来说,很多科学家反倒有些失望,毕竟找到一个48年前就被预言了的“老粒子”多少有些无趣,他们期盼的是更为颠覆性的发现:假如标准模型被推翻,整个物理世界的理论都有可能要重新改写。寻找希格斯粒子历程艰难花费惊人

上帝粒子之所以取名为希格斯,是因为它是英国科学家彼得•希格斯(Peter Higgs)于1964年提出的(与他差不多同时提出希格斯这一机制的还有其他几个人,一旦希格斯粒子的存在最后被确认,他们将分享诺贝尔物理奖)。

寻找希格斯的工作早在上世纪90年代的LEP对撞机上就开始了。LEP似乎看到了希格斯的小尾巴,可惜LEP对撞机由于要让位于LHC的修建而过早关闭了,从此便与希格斯擦肩而过(现在看来,LEP的能量再提升一点就有能力看到希格斯了)。

接下来前赴后继的是美国费米实验室的Tevatron对撞机,这一领世界风骚近20年的对撞机也对希格斯进行了大力追捕,也模模糊糊看到了希格斯的娇容,可惜这一对撞机正值壮年就被关闭了(被关闭的原因是在能量和亮度两方面都竞争不过欧洲人的LHC对撞机)。

其实在LHC建造之前,美国人已经开始建造超级超导对撞机SSC,按照设计它将是真正的巨无霸对撞机,其能量比LHC还要高3倍,目标也是寻找希格斯。可惜,SSC由于花费惊人(被称为“吞噬金钱的无底洞”)而被美国国会终止了,已经挖好的地洞也被填平(很多第三世界国家的人为此叹息,这些花巨资挖的地道可以作防空洞或地道战用啊)。

但是,欧洲人并没有因此而停顿建造LHC的步伐,欧共体成员国共同出钱如期完成了LHC工程(世界上其他大国包括中国在内,也不同程度地出了钱)。LHC对撞机是人类历史上投资最大的科学研究机器,造价高达100亿美元,这一人类历史上最高能量对撞机的主要目标就是寻找上帝粒子——希格斯。由于LHC涉及到几十个国家和几百个大学,它的发言人在7月4日的发布会做最后总结时说,LHC是全球的力量、全球的成功!

第四篇:人体解剖生理学重点解读

人体解剖生理学

绪论

1、研究对象与内容: 1.解剖学(anatomy):研究机体各个组成部分的学科——关于结构的科学——静态 2.生理学(physiology):研究机体及各部分所表现的生命活动现象和生理活动的调节机制的学科——关于功能的科学——动态过程

2、研究方法:(1)急性实验法

①离体组织、器官实验法 ②活体解剖实验法

优点:对实验条件的要求简单,影响因素小,能快速得到结果。

缺点:在麻醉条件下进行,与正常生理情况下有所差别,实验结果有一定局限性。(2)慢性实验法

在保持比较自然的外界环境条件下,研究生物体复杂的生理活动、器官之间的协调关系,以及机体的生理活动如何与外界环境相适应。

优点:实验结果在机体正常生理活动状态下获得,可分析整体动物及各种生理活动的调节机制。缺点:应用范围受限制。(3)发育的异常

巨人症(gigantism)

垂体性侏儒症(pituitary dwarfism)呆小症

“阉人”征(eunuochism)

一、人体基本结构概述

1、细胞的化学组成:

(一)蛋白质

1.是组成细胞的最主要的成分,是细胞的结构基础。

4.酶:特殊的蛋白质,催化生物化学反应(高效、特异、受调控)。

(二)糖类

1.碳水化合物,是自然界中存在最为丰富、分布最广泛的有机物。4.与其他类型的物质相结合,如糖蛋白。

(三)脂类

1.一般不溶于水,分为脂肪和类脂;

3.类脂包括:胆固醇、胆固醇脂、磷脂、糖脂等,功能:细胞膜的最重要的成分。

(四)核酸

1.核糖核酸(RNA):碱基、核糖、磷酸,功能:参与蛋白质合成,是DNA和蛋白质之间的中介物质(mRNA、tRNA、rRNA);

2.脱氧核糖核酸(DNA):碱基、脱氧核糖、磷酸,功能:遗传物质的贮存和携带者; 3.核苷=碱基+糖苷键+核糖;

核苷酸=核苷+磷酸二酯键+磷酸

4.核苷酸根据碱基的不同分为5类:腺嘌呤核苷酸(A)鸟嘌呤核苷酸(G)胞嘧啶核苷酸(C)尿嘧啶核苷酸(U)胸腺嘧啶(T), 尿嘧啶核苷酸只出现在RNA分子中,胸腺嘧啶只出现在DNA分子中。

二、运动系统

1、运动系统包括3个部分:人体运动系统包括骨、骨连接和骨骼肌三部分

2、骨的构造、化学成分、生长和发育、影响因素 骨的构造:骨质、骨膜、骨髓

骨膜:一层纤维性结缔组织膜,含有丰富的血管、神经和淋巴,对骨的营养、生长及损伤后的修复有重要作用。

红骨髓 分布于全身骨松质内,造血功能;

黄骨髓 6岁,脂肪组织代替红骨髓,无造血功能,某些病理情况下可恢复。骨的化学成分:有机质:骨胶原纤维,韧性和弹性

无机质:碱性磷酸钙,脆性和坚硬

3、关节的基本结构,直接/间接连结

直接连结:由相邻骨之间借致密结缔组织、软骨或骨直接连结,活动幅度小或不能活动。间接连结:即关节(articulation),由相邻骨之间借结缔组织构成的囊相连,活动幅度大。

4、骨骼名称,表,206块

6、P43表,熟悉

三、神经系统

(1)特异投射系统

由丘脑特异感觉接替核及其投射到大脑皮层的神经通路 丘脑感觉接替核→大脑皮层

特点:点对点的投射,产生特定的感觉,激发大脑皮层发出传出冲动。(2)非特异投射系统

由丘脑非特异投射核及其投射到大脑皮层的神经通路

丘脑非特异投射核→大脑皮层

特点:非点对点的投射,不引起特殊的感觉,维持和改变大脑皮层的兴奋状态。资料书P285

特异性投射系统:是指感受器发出的传入冲动沿特定的传导通路投射到大脑皮层特定区产生特定感觉的传导束,即经典的感觉传导道,由三级神经元的接替完成的。

第一级神经元位于脊神经节或有关的脑神经感觉神经节内,第二级神经元位于脊髓后角或脑干的有关神经核内,第三级神经元在丘脑的感觉接替核内(嗅觉除外)。

在丘脑接替核换元后经特异投射系统点对点地投射于大脑皮层的特定区。

主要功能是引起特定的感觉,并激发大脑皮层产生传出神经冲动。损毁某一传导道,引起某种特定感觉障碍,但动物仍保持清醒。1.浅感觉

皮肤粘膜感受的外界感觉,如痛觉、温度觉、触觉; ⑴ 躯干、四肢浅感觉传导通路:

脊神经节——脊髓灰质后角——丘脑外侧核 ——中央后回、旁中央小叶 ⑵ 头面部浅感觉传导通路:

三叉神经半月节——三叉神经脊束核(痛、温觉)和三叉神经主核(触觉)——丘脑外侧核——中央后回下1/3 2.深感觉(本体感觉)

深感觉:是来自肌肉、肌腱、骨膜和关节的本体感觉,如运动觉、位置觉、振动觉; 复合感觉:又称皮质感觉,包括实体觉、图形觉、两点辨别觉、皮肤定位觉、重量觉等; 精细触觉包括实体觉、图形觉、两点辨别觉、皮肤定位觉等。⑴ 意识性感觉的传导通路

脊神经节——薄束核、楔束核——丘脑外侧核 ——中央后回、旁中央小叶、中央前回 ⑵ 非意识性深感觉

①脊神经节——薄束核、楔束核——丘脑外侧核

——中央后回、旁中央小叶、中央前回

②传向小脑的通路:脊神经节——脊髓后角或中间 内侧核——小脑

非特异性投射系统:经典传导道的第二级神经元纤维通过脑干时,发出侧支与脑干网状结构中神经元发生突触联系,经多次换元组成脑干网状结构上行激动系统,该系统的上行纤维抵达非特异性核群,换元后弥散性地投射到大脑皮层的广泛区域。这一投射途径称为非特异性感觉投射系统。

功能特点:非特异性投射系统上行纤维进入皮层后反复分支,终止到各层,与各层神经元的树突形成突触联系,不存在专一的投射关系。这种联系不易引导起神经元局部兴奋的总和,所以是非特异的,通过电紧张性影响可改变细胞的兴奋状态。

因此,该系统的功能是维持和改变大脑皮层的兴奋状态。损毁该系统后动物处于昏睡状态。

10、试述大脑皮质主要的沟、回及功能分区 P216-217

半球表面有许多深浅不等的脑沟,沟与沟之间的隆起,称为脑回

大脑主要包括左、右大脑半球,每个大脑半球分3个面,即背外侧面、内侧面和底面。分布在背外侧面的主要沟裂有中央沟、大脑外侧沟、顶枕裂、矩状裂。这些沟裂将大脑分为四叶:额叶、顶叶、枕叶和颞叶。分区:

(1)体表感觉区(2)肌肉本体感觉区(3)视觉区(4)听觉区

(5)嗅觉和味觉区

四、感觉器官

1、感受器,是什么、特性(适宜刺激、适应、感受野、侧抑制)

感受器(receptor):分布于体表或组织内部感受机体内外环境变化的特殊结构或装置。感受器的生理特性:

(一)感受器的适宜刺激

(二)感受器的换能作用(各种刺激、能量→动作电位)

(三)编码作用

(四)感受器的适应现象

(五)感觉的精确度

适宜刺激 :是指感受器最敏感、最容易接受的刺激形式。

感受器的适应:指的是当刺激持续作用于感受器时,虽然刺激仍在继续,但传入神经纤维上的冲动频率已开始下降的现象。

感受野:每个感觉神经元对刺激的反应都限定在所支配的某个皮肤区域内,这个区域即感受野。

侧抑制:一个感觉传入纤维进入脊髓后,一方面直接兴奋某一中枢的神经元,另一方面发出其侧枝兴奋另一抑制性中间神经元;然后通过抑制性神经元的活动转而抑制另一中枢的神经元。基本上它们的作用都是提高感觉精确度

2、折光装置、三层结构

角膜、房水、晶状体和玻璃体

滤过膜的三层结构:毛细血管内皮细胞层、基膜层、肾小囊脏层上皮细胞层

3、视杆视锥细胞的感光机制差别

视锥细胞与视杆细胞换能的异同

相同点:

都是超极化型感受器电位

感光换能的机制十分相似

不同点:

视锥细胞感光色素分子数目少

视锥细胞有三种感光色素并且分别对映三种视锥细胞

视锥细胞的三种感光色素彼此之间以及与视紫红质之间均不同,但不同点仅在于视蛋白分子的不同

5、视觉传导通路

6、听觉构造,3块听小骨的位置名称 三块听小骨,锤骨(malleus,hammer)、砧骨(incus,anvil)和镫骨(stapes,stirrup)组成。3块听骨构成传导和调节声压的杠杆系统。

8、听觉传导通路 第五章 血液

体液(body fluid):占体重60%~70%。细胞内液(intracellular fluid):占体液2/3; 细胞外液(extracellular fluid):占体液1/3,血液、组织液、淋巴液、脑脊液。等渗溶液(isotonic solution):与血浆渗透压相等的溶液。生理盐水0.9%NaCl溶液。正常人血浆的pH值7.35~7.45,略偏碱性。血浆蛋白功能如下:

1)形成血浆胶体渗透压 2)免疫功能 3)运输作用 4)营养功能 5)缓冲作用(血浆白蛋白和其钠盐组成缓冲对)

6)参与凝血和抗凝血作用 非特异免疫和特异免疫:

1.先天性免疫(innate immunity): 遗传得来,外部防御(皮肤、黏膜),内在防御(巨噬细胞,中性粒细胞、血清蛋白)——并不针对某一特定的抗原,无特异性——非特异性免疫(nonspecific immunity); 2.获得性免疫(acquired immunity):

发育过程中与外界物质接触得来,T细胞和B细胞——主要针对某一特定抗原起作用,具有特异性——特异性免疫(specific immunity)。3.主动免疫(active immunization):

血液中的抗体浓度在初始反应几天后达到一个高峰,并在几个星期内逐渐下降。在此过程中被激活的淋巴细胞能够连续分裂增殖,产生一个特异性克隆。4.被动免疫(passive immunization):

将机体免疫应答的产生的活性产物转输给非免疫的个体,以达到同一抗原的作用

第七章 呼吸系统

4、喉软骨有那几种?哪些是成对出现的?

5、有异物落入气管时,最易落入哪一边支气管? 右侧

6、肺分为几叶几部?他们分别是什么?

(一)肺的导管部 分支 左2右3 支气管树,细支气管,肺小叶

双重神经支配,控制肺泡内气流量

(二)肺的呼吸部

呼吸性细支气管、肺泡管、肺泡囊和肺泡 兼有呼吸通道与气体交换的能力

7、呼吸型式有哪一些?什么样的呼吸效率最高?

1.平静呼吸(吸气主动,呼气被动)与用力呼吸(吸气、呼气都是主动过程)2.腹式呼吸与胸式呼吸

1.吸入气体量大,肺组织得以充分伸展,有利于肺通气 2.深呼吸时吸气和呼气时间相对较长,有利于肺换气

8、肺内压和胸膜腔内压是什么?各有什么特点?什么是气胸? 肺内压:肺泡内的压力 胸内负压的生理意义

1.稳定肺泡,维持扩张状态 2.促进静脉和淋巴回流

9、呼吸中枢有哪一些?“长吸中枢”和呼吸调整中枢在哪里,为什么这么叫?呼吸节律是如何形成的? 呼吸中枢:脊髓

低位脑干(脑桥、延髓)

高位脑

12、吸烟对呼吸系统有何危害? 第八章 消化系统 2.消化管的一般组织结构是怎样的?

(一)黏膜 上皮、固有层、黏膜肌层

(二)黏膜下层

(三)肌层

(四)外膜

3.消化管平滑肌的生理特性有哪一些?

(1)兴奋性:消化管平滑肌兴奋性较低,收缩缓慢。平滑肌收缩的潜伏期、收缩期核舒张期所展示间都比骨骼肌长。

(2)伸展性:消化管平滑肌由很大伸展性,可比原来长度伸长2~3倍。

(3)紧张性:消化管平滑肌经常保持一种微弱的收缩状态,使消化管保持一定的张力或紧张性。

(4)自动节律性;消化管平滑肌离体后,放入适宜的环境中,仍能进行节律性收缩,但收缩的节律不如心脏规则,且收缩缓慢。

(5)对理化刺激的敏感性:消化管平滑肌对电刺激不敏感,对机械牵张、温度核化学刺激较敏感,对生物组织代谢物刺激特别敏感。4.根据牙的功能怎么分类?牙的构造是怎样的? 5.试述舌产生味觉的机制。7.试述胃的位置和分布?P66 8.什么是胃腺?有哪几种?

大消化腺(大唾液腺、肝、胰)和消化管壁内的小消化腺 9.试述肝的位置和功能。P68 11.胆汁的产生和排放途径如何? 12.唾液、胃液、胰液、小肠液的主要成分和作用是怎样的?

第十章 泌尿系统

1、请说明肾的位置和形态。

3、什么是集合管?什么是肾小球旁器?

4、尿有哪些化学成分和理化特性?

(一)尿的化学成分

正常成年人一昼夜尿量:1000~2000ml 95%~97%水,3%~3.5%溶质(电解质和非蛋白含氮化合物)

(二)尿的理化特性

比重1.015~1.025 pH 5.0~7.0 第十一章 内分泌系统

3、有关激素作用的机制有哪些理论?

4、下丘脑的位置和基本结构怎样?

5、下丘脑调节肽有哪些?功能如何?

6、垂体的位置和基本结构怎样? 垂体包括腺垂体和神经垂体。

腺垂体结构功能:腺细胞分为嗜酸性细胞、嗜碱性细胞核嫌色细胞。嗜酸性细胞有两种,生长激素细胞,分泌生长激素;催乳素细胞,分泌催乳素。嗜碱性细胞有3种,促甲状腺激素细胞,分泌促甲状腺激素;促肾上腺皮质激素细胞,分泌促肾上腺皮质激素;促性腺激素细胞,分泌促卵泡激素和黄体生成素。神经垂体结构功能:主要由大量的神经纤维、垂体细胞、丰富的突状毛细血管和少量结缔组织构成。贮存有视上核和室旁核神经元胞体合成的抗利尿激素和催产素,并释放入血。

7、神经垂体释放哪些激素?作用如何? 1.促激素 2.生长素 3.催乳素

4.促黑素细胞激素

8、简述下丘脑-垂体-靶腺轴的调节机制。

10、盐皮质激素和糖皮质激素分别有什么生理功能?

12、什么是应激反应?会对机体造成什么影响? 第十二章 生殖系统

1、请描述受精的过程。

父本精子的遗传物质引入母本的卵子内,使双方的遗传性状在新的生命中得以表现,促进物种的进化和遗传品质的提高。

(一)配子运行

精子由射精部位(或输精部位)、卵子由排出的部位到达输卵管壶腹的过程。精子比卵子运行的路径更长更复杂。

(二)精子获能 大多数哺乳动物的精子都必须在雌性生殖道内停留一段时间,才能使卵子受精,获得受精的能力。除去去能因子,精子细胞膜蛋白发生变化,发生顶体反应。

(三)受精

受精过程:雌雄配子结合形成合子的过程。顶体反应

2、男性生殖系统包括哪些器官?

(一)内生殖器 1.睾丸

2.附睾、输精管

3.精囊腺、前列腺及尿道球腺

(二)外生殖器 1.阴茎 2.阴囊

3、女性生殖系统包括哪些器官?

(一)内生殖器 1.卵巢 2.输卵管 3.子宫与阴道

(二)外生殖器 外阴

4、雄性激素有哪一些?在什么部位合成?

睾丸间质细胞分泌雄激素,主要成分为睾酮。支持细胞除支持、营养生殖细胞外,还能分泌抑制素和凶激素结合蛋白。雄激素主要维持、促进生精作用,促进机体生长发育和男性副性征的出现。

5、雌性激素有哪一些?在什么部位合成? 卵巢:雌激素、孕激素

6、神经中枢如何调节睾丸和卵巢的分泌活动?

6、什么是生殖周期?卵巢和子宫随生殖周期有什么变化?

生殖周期:是哺乳动物普遍具有的生命现象,表现为雌性生殖能力出现周期性变化。人类女性从青春期到绝经期出现周期性排卵,而怀孕期和哺乳器都能造成一段时间内排卵的终断。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第五篇:今年,中国科学家屠呦呦获得诺贝尔生理学或医学奖阅读附答案

阅读下面材料,完成第(1)(3)题

【材料一】

今年,中国科学家屠呦呦获得诺贝尔生理学或医学奖。获奖期间,她只在正式场合—— 瑞典卡罗林斯卡医学院做过一次题为《青蒿素---中医药给世界的一份礼物》的演讲。①在演讲中,屠呦呦详细回顾了青蒿素发明的具体过程,并点名感谢了协作单位,最后以一首王之涣的诗作为结束:“请各位有机会时更上一层楼,去领略中国文化的魅力,发现蕴涵于传统中医药中的宝藏!”

【材料二】

演讲要求论点鲜明、逻辑性强,经常使用各种修辞手法,结尾常发出呼吁或号召,具有较强的感染力和鼓动性。②通过演讲者根据不同的场合和对象,使听众听到演讲者设计的不同的演讲内容。

(1)划线的句中有语病,请修改。

(2)把屠呦呦演讲的结尾换成“青蒿,生有生的意义,死有死的价值”好不好?为什么?

(3)你要参加学校的“诺奖离中国人并不远”的演讲比赛,以下不必讲的两项是()()

A.回顾中国人获奖情况 B.介绍中国获奖者事迹 C.介绍外国获奖者事迹

D.介绍历年颁奖委员会成员 E.号召同学们珍惜时间、发奋学习

(1)①改为:“在演讲

中,屠呦呦详细回顾了青蒿素发明的过程”

或“在演讲中,屠呦呦回顾了青蒿素发明的具体过程”

②改为:演讲者要根据不同的场合和对象,为听众设计不同的演讲内容。

(2)不好。原结尾引用中国著名古诗,呼吁听众更多地了解中医药,领略中国文化魅力,既符合屠呦呦中医药专家的身份又富有感染力。改句虽运用了对偶修辞,但内容只是对青蒿本身的赞美,缺少与听众的互动。

(3)C、D

下载“2011年诺贝尔医学或生理学奖”解读word格式文档
下载“2011年诺贝尔医学或生理学奖”解读.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    医学生理学教学的现状及思考

    医学生理学教学的现状及思考 摘 要:随着国家教育免学费政策的落实,医学专业也是唯一一个可以参加执业助理医师考试的专业。然而,学生的质量大不如前,学生的基础参差不齐,给教师的......

    医学基础知识重要考点:神经-生理学

    生理学属于医学基础知识需要掌握的内容,中公卫生人才招聘考试网帮助大家梳理知识-神经。 何谓神经的营养性作用?有哪些方面的表现? 其可能机制如何? 神经对所支配的组织除能......

    屠呦呦获诺贝尔生物学奖后感

    屠呦呦获诺贝尔生物学奖后感 ——中医文化的发展 屠呦呦肯定是现下最受关注的科学家了。 瑞典卡罗琳医学院10月5日在斯德哥尔摩宣布,将2015年诺贝尔生理学或医学奖授予中国......

    人体解剖生理学复习资料解读[推荐5篇]

    肾血液循环的功能特点:1.血液分布不匀 2.压力高低不同 3.流量大,一定范围内相对稳定 肾血流量的调节方式(肌源学说):当A压↑→A管壁平滑肌紧张性↑而收缩→血流阻力↑→肾血流量......

    医学基础知识重要考点:神经(24)-生理学

    生理学属于医学基础知识需要掌握的内容,中公卫生人才招聘考试网帮助大家梳理知识-神经。 何谓脑诱发电位?脑诱发电位具有哪些临床意义呢? 诱发电位是指感觉传入系统受刺激时,......

    医学基础知识:生理学必须掌握重点知识归纳

    中公医疗卫生网对生理学各章节需要掌握的重要内容做了归纳,希望同学们能够根据这些要求的点去有重点地复习相关内容,更好地掌握生理学。 9. 感觉器官的功能 感受器的一般生......

    感觉器官的功能-医学生理学-讲义-09

    第九章 感觉器官的功能 人体主要的感觉有视觉、听觉、嗅觉、味觉、躯体感觉(包括皮肤感觉与深部感觉)和内脏感觉等。 第一节 感受器和感觉器官的一般生理 一、感受器、感觉......

    能量医学解读抑郁症

    能量医学解读抑郁症指导专家:广州市无创医学有限公司能量医学专家樊燕刚近日以来,我的一位朋友莫名其妙的患上了抑郁症,这着实让我着急.眼看她日益消瘦,作为朋友的我,实在是于心不......