第一篇:有理分式函数的图象及性质
有理分式函数的图象及性质
【知识要点】 1.函数y
axbcx
d
(c0,adbc)dcdc
(2)值域:{y|y
(1)定义域:{x|x单调区间为(,直线x
dc,y
dcacb
x),(,+)(4)dc,ac,对称中心为点()
(5)奇偶性:当ad0时为奇函数。(62.函数yax
(a0,b0)的图象和性质:
(1)定义域:{x|x0}(2)值域:{y|y或y(3)奇偶性:奇函数(4)单调性:在区间+),(上是增函数;在区间0)上是减函数(5以y轴和直线yax为渐近线(6)图象:如图所示。
3.函数yax
b(a0,b
0)的图象和性质:
【例题精讲】 1.函数y
1x
1的图象是()
A
x1
B
C
x3x
2D
x3x2
2.函数y
A.y
x3x2
2x
3(x1)的反函数是
x3x2
()
(x1)
(x2)B.y
x2xa
(x2)C.y(x1)D.y
3.若函数f(x)的图象关于直线yx对称,则a的值是()
A.1B.1C.2D.2
2x1
4.若函数f(x)存在反函数,则实数a的取值范围为
xaA.a1B.a1C.a
()
D.a
5.不等式4x
A.(
12,0)(12
1x的解集为
12)(12
(),0)(0,12),)B.(-,
axb,)C.(,0)(0,+)D.(
6.已知函数f(x)的图象如图所示,则a,b,c的大小关系为2
xc
A.abcB.acbC.bacD.bca 7.若正数a、b满足abab3,则ab的取值范围是_____。8.函数y
3xx
4()的值域是。的反函数的图象关于点(1,4)成中心对称,则实数
9.若函数y
axxa
1a。
10.函数y
e1e1
x
x的反函数的定义域是。
11.不等式
2x1x
31的解集是。
12.函数y
xxxx1的值域是。
13.设f(x)x
ax1,x[0,+)。
(1)当a=2时,求f(x)的最小值;
(2)当0<a<1时,判断f(x)的单调性,并写出f(x)的最小值。14.设函数f(x)调性. BABDAD
331,]9.310.(1,1)11.x3或x412.[,1)443
213.解:(1)a=2时,f(x)=x+= x+1+-1≥22-1,等号在x+1=,x1x1x1
xaxb
(ab0),求f(x)的单调区间,并证明f(x)在其单调区间上的单
7.[9,+)8.[
x=2-1(∵x∈[0,+∞))时成立.
(2)当0<a<1时,设x1,x2 ∈[0,+∞),x1<x2 . 则f(x2)- f(x1)=(x2-x1)+
ax21
-
ax11
a
=(x2-x1)(1-
a
(x11)(x21)).
∵ 0<a<1,∴
a
(x11)(x21)
<1,1-
(x11)(x21)
>0,又 x2-x1>0,于是f(x2)- f(x1)=(x2-x1)(1-
a
(x11)(x21))>0,f(x2)> f(x1),f(x)是增函数. 在x=0时,f(x)的最小值是a. 14.解:函数f(x)
xaxb的定义域为(,b)(b,)
f(x)在(,b)内是减函数,f(x)在(b,)内也是减函数
证明
f(x)
在(b,)内是减函数
取x1,x2(b,),且x1x2,那么
x1ax1b
x2ax2b
f(x1)f(x2)
(a-b)(x2x1)(x1b)(x2b)
∵ab0,x2x10,(x1b)(x2b)0 ∴f(x1)f(x2)0 即
f(x)
在(b,)内是减函数,同理可证
f(x)
在(,b)内是减函数。
浅 说 函 数 的 对 称 性
函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。
一、函数自身的对称性探究
定理1.函数 y = f(x)的图像关于点A(a ,b)对称的充要条件是f(x)+ f(2a-x)= 2b
证明:(必要性)设点P(x ,y)是y = f(x)图像上任一点,∵点P(x ,y)关于点A(a ,b)的对称点P‘(2a-x,2b-y)也在y = f(x)图像上,∴ 2b-y = f(2a-x)即y + f(2a-x)=2b故f(x)+ f(2a-x)= 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f(x)图像上任一点,则y0 = f(x0)∵ f(x)+ f(2a-x)=2b∴f(x0)+ f(2a-x0)=2b,即2b-y0 = f(2a-x0)。
故点P‘(2a-x0,2b-y0)也在y = f(x)图像上,而点P与点P‘关于点A(a ,b)对称,充分性得征。
推论:函数 y = f(x)的图像关于原点O对称的充要条件是f(x)+ f(-x)= 0 定理2.函数 y = f(x)的图像关于直线x = a对称的充要条件是
f(a +x)= f(a-x)即f(x)= f(2a-x)(证明留给读者)推论:函数 y = f(x)的图像关于y轴对称的充要条件是f(x)= f(-x)
定理3.①若函数y = f(x)图像同时关于点A(a ,c)和点B(b ,c)成中心对称(a≠b),则y = f(x)是周期函数,且2| a-b|是其一个周期。
②若函数y = f(x)图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f(x)
是周期函数,且2| a-b|是其一个周期。
③若函数y = f(x)图像既关于点A(a ,c)成中心对称又关于直线x =b成轴对称(a≠
b),则y = f(x)是周期函数,且4| a-b|是其一个周期。①②的证明留给读者,以下给出③的证明: ∵函数y = f(x)图像既关于点A(a ,c)成中心对称,∴f(x)+ f(2a-x)=2c,用2b-x代x得:
f(2b-x)+ f [2a-(2b-x)] =2c………………(*)又∵函数y = f(x)图像直线x =b成轴对称,∴ f(2b-x)= f(x)代入(*)得:
f(x)= 2c-f [2(a-b)+ x]…………(**),用2(a-b)-x代x得 f [2(a-b)+ x] = 2c-f [4(a-b)+ x]代入(**)得:
f(x)= f [4(a-b)+ x],故y = f(x)是周期函数,且4| a-b|是其一个周期。
二、不同函数对称性的探究
定理4.函数y = f(x)与y = 2b-f(2a-x)的图像关于点A(a ,b)成中心对称。定理5.①函数y = f(x)与y = f(2a-x)的图像关于直线x = a成轴对称。
②函数y = f(x)与a-x = f(a-y)的图像关于直线x +y = a成轴对称。③函数y = f(x)与x-a = f(y + a)的图像关于直线x-y = a成轴对称。定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0 ,y0)是y = f(x)图像上任一点,则y0 = f(x0)。记点P(x ,y)关于直线x-y = a的轴对称点为P‘(x1,y1),则x1 = a + y0 , y1 = x0-a,∴x0 = a + y1 , y0= x1-a 代入y0 = f(x0)之中得x1-a = f(a + y1)∴点P(x1,y1)在函数x-a = f(y + a)的图像上。
同理可证:函数x-a = f(y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f(x)的图像上。故定理5中的③成立。
推论:函数y = f(x)的图像与x = f(y)的图像关于直线x = y 成轴对称。
三、函数对称性应用举例
例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)= f(5+x),则f(x)一定是()(第十二届希望杯高二 第二试题)(A)是偶函数,也是周期函数(C)是奇函数,也是周期函数
(B)是偶函数,但不是周期函数(D)是奇函数,但不是周期函数
‘
解:∵f(10+x)为偶函数,∴f(10+x)= f(10-x).∴f(x)有两条对称轴 x = 5与x =10,因此f(x)是以10为其一个周期的周期函数,∴x =0即y轴也是f(x)的对称轴,因此f(x)还是一个偶函数。故选(A)
例2:设定义域为R的函数y = f(x)、y = g(x)都有反函数,并且f(x-1)和g(x-2)函数的图像关于直线y = x对称,若g(5)= 1999,那么f(4)=()。
(A)1999;(B)2000;(C)2001;(D)2002。
解:∵y = f(x-1)和y = g(x-2)函数的图像关于直线y = x对称,∴y = g-1(x-2)反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1)= 2 + g(x), ∴有f(5-1)= 2 + g(5)=2001 故f(4)= 2001,应选(C)
例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,12
f(x)= -x,则f(8.6)= _________(第八届希望杯高二 第一试题)
解:∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x)∴x = 1也是y = f(x)对称轴。故y = f(x)是以2为周期的周期函数,∴f(8.6)= f(8+0.6)= f(0.6)= f(-0.6)= 0.3
例4.设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0≤x≤1时,f(x)= x,则f(7.5)=()(A)0.5
(B)-0.5
(C)1.5
(D)-1.5
解:∵y = f(x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f(x+2)= -f(x)= f(-x),即f(1+ x)= f(1-x),∴直线x = 1是y = f(x)对称轴,故y = f(x)是周期为2的周期函数。
∴f(7.5)= f(8-0.5)= f(-0.5)= -f(0.5)=-0.5 故选(B)
第二篇:二次函数的图象和性质教案
27.2.1 相似三角形的判定
(一)梅
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
二、重点、难点
1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法
(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前
ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;
(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;
(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;
(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):
如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC
ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这
ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
三、例题的意图
本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.
例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.
四、课堂引入
1.复习引入
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.
ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.
反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.
ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】
三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
五、例题讲解
例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.
解:略(AD=3,DC=5)
例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.
ABACBCAB解:略(DE103).
六、课堂练习
1.(选择)下列各组三角形一定相似的是()
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)
七、课后练习
1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.
3.如图,DE∥BC,)
(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长. 教学反思
第三篇:正弦函数、余弦函数的图象和性质教案
正弦函数、余弦函数的图象和性质
一、学情分析:
1、学习过指数函数和对数函数;
2、学习过周期函数的定义;
3、学习过正弦函数、余弦函数0,2上的图象。
二、教学目标: 知识目标:
1、正弦函数的性质;
2、余弦函数的性质; 能力目标:
1、能够利用函数图象研究正弦函数、余弦函数的性质;
2、会求简单函数的单调区间; 德育目标:
渗透数形结合思想和类比学习的方法。
三、教学重点
正弦函数、余弦函数的性质
四、教学难点
正弦函数、余弦函数的性质的理解与简单应用
五、教学方法
通过引导学生观察正弦函数、余弦函数的图象,从而发现正弦函数、余弦函数的性质,加深对性质的理解。(启发诱导式)
六、教具准备
多媒体课件
七、教学过程
1、复习导入
(1)我们是从哪个角度入手来研究指数函数和对数函数的?(2)正弦、余弦函数的图象在0,2上是什么样的?
2、讲授新课
(1)正弦函数的图象和性质(由教师讲解)
通过多媒体课件展示出正弦函数在2,2内的图象,利用函数图象探究函数的性质:
ⅰ 定义域
正弦函数的定义域是实数集R ⅱ 值域
从图象上可以看到正弦曲线在1,1这个范围内,所以正弦函数的值域是1,1 ⅲ 单调性
结合正弦函数的周期性和函数图象,研究函数单调性,即:
在2k,2 k (k上是增函数;
Z)
222k
在
,2 k
(k
Z)上是减函数;
223ⅳ 最值
观察正弦函数图象,可以容易发现正弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论:
当
x k
,k
Z 时,y max
1当
x k ,k
时,y min
1
Z22
ⅴ 奇偶性
正弦函数的图象关于原点对称,所以正弦函数的奇函数。ⅵ 周期性
正弦函数的图象呈周期性变化,函数最小正周期为2。(2)余弦函数的图象和性质(由学生分组讨论,得出结论)
通过多媒体课件展示出余弦函数的图象,由学生类比正弦函数的图象及性质进行讨论,探究余弦函数的性质: ⅰ 定义域
余弦函数的定义域是实数集R ⅱ 值域
从图象上可以看到余弦曲线在1,1这个范围内,所以余弦函数的值域是1,1 ⅲ 单调性
结合余弦函数的周期性和函数图象,研究函数单调性,即:
在,2 k (k
2 k
Z)上是增函数;
2 k,2 k
(k
Z)上是减函数;
在ⅳ 最值
观察余弦函数图象,可以容易发现余弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论:
min 当
x
k , k
Z 时,y max
1
当
x
2 k
, k
Z 时,y
1
ⅴ 奇偶性
余弦函数的图象关于y轴对称,所以余弦函数的偶函数。ⅵ 周期性
余弦函数的图象呈周期性变化,函数最小正周期为2。
3、例题讲解:
例:求函数 y
sin()的单调递增区间。
x23分析:采用代换法,利用正弦函数的单调性来求所给函数的单调区间。
1u 的单调递增区间是 解:令 u
x
.函数 y
sin
3[
k ,
2k
Z
k ],222
x 2由k
k ,2321
得:
54kx4k,kZ.33
5x4k,4k(kZ)
)的单调增区间是 所以函数
y
sin(
3323
4、练习:
3求函数 y
sin(x )的单调减区间。
4k8,k8(kZ)
答案:
5、小结:
(1)探究正弦函数、余弦函数的性质的基本思路是什么?(2)求正弦函数、余弦函数的单调区间的基本步骤是怎样的?
6、作业:
习题1.4
第4题、第5题
第四篇:6.2 反比例函数的图象和性质 教案
6.2 反比例函数的图象和性质(1)教案
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能描点画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 [教学重点和难点] 本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点 [教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质.转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1 反比例函数y
由于反比例函数y6的图象. x6的图象是曲线型的,且分成两支.对此,学生第一次x接触有一定的难度,因此需要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值? ——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值.
描点:依据什么(数据、方法)找点? 连线:怎样连线? ——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来.
探索活动2 反比例函数y6的图象. x
可以引导学生采用多种方式进行自主探索活动:
(1)可以用画反比例函数y6的图象的方式与步骤进行自主探索其图象; x
666与y之间的关系,画出y的图象.
xxx66
探索活动3 反比例函数y与y的图象有什么共同特征?
xx
(2)可以通过探索函数y
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.
反比例函数yk(k≠0)的图象是由两个分支组成的曲线.当k0时,图象x在一、三象限:当k0时,图象在二、四象限.
反比例函数y
3、例题教学
课本安排例1,(1)巩固反比例函数的图象的性质.
(2)是为了引导学生认识到:由于在反比例函数yk(k≠0)中,只要常数xk(k≠0)的图象关于直角坐标系的原点成中心对称. xk的值确定,反比例函数就确定了.因此要确定一个反比例函数,只需要一对对应值或图象上一个点的坐标即可.
(3)可以先设问:能否利用图象的性质来画图?
4、应用知识,体验成功
练笔:课本“课内练习” 1.2.3
5、归纳小结,反思提高
用描点法作图象的步骤
反比例函数的图象的性质
6、布置作业
作业本(1)课本“作业题”
第五篇:高中数学教案:正切函数的图象和性质
正切函数的图象和性质
(一)教材分析:
学习正切函数的图象和性质,主要包括:定义域、值域、周期性、单调性、奇偶性等,以及具体的应用。
(二)素质教育目标: 1.知识目标:
(1)用单位圆中的正切线作正切函数的图象;(2)用正切函数图象解决函数有关的性质; 2.能力目标:
(1)理解并掌握作正切函数图象的方法;
(2)理解用函数图象解决有关性质问题的方法; 3.德育目标:培养研究探索问题的能力;
(三)教学三点解析:
1.教学重点:用单位圆中的正切线作正切函数图象; 2.教学难点:性质的研究;
3.教学疑点:正切函数在每个单调区间是增函数,并非整个定义域内的增函数;
(四)教学过程设计 1.设置情境
前面我们研究了正、余弦函数的图象和性质,但常见的三角函数还有正切函数,今天我们来探讨一下正切函数的图象,以及它具有哪些性质。2.探索研究
由研究正、余弦函数的图象和性质的方法引出正切函数的图象和性质。下面我们也将利用单位圆中的正切线来绘制ytanx图象.
(1)用正切线作正切函数图象
1分析一下正切函数ytanx是否为周期函数?
○ f(x)taxn(sinx())coxs()xsinxtfaxn xcos()
∴ytanx 是周期函数,是它的一个周期.
我们还可以证明,是它的最小正周期.类似正弦曲线的作法,我们先作正切函数在一个周期上的图象,下面我们利用正切线画出函数ytanx,x
,的图象. 22
作法如下:
①作直角坐标系,并在直角坐标系
轴左侧作单位圆.
②把单位圆右半圆分成8等份,分别在单位圆中作出正切线.
③描点。(横坐标是一个周期的8等分点,纵坐标是相应的正切线).
④连线.
图1
根据正切函数的周期性,我们可以把上述图象向左、右扩展,得到正切函数ytanx,(xR,xk2,kZ)的图象,并把它叫做正切曲线(如图1).
图2
(2)正切函数的性质
请同学们结合正切函数图象研究正切函数的性质:定义域、值域、周期性、奇偶性和单调性.
①定义域:x|xk
②值域:R
③周期性:正切函数是周期函数,周期是. ,kZ 2
④奇偶性:tan(x)tanx,∴正切函数是奇函数,正切曲线关于原点O对称.
⑤单调性:由正切曲线图象可知:正切函数在开区间(强调:a.不能说正切函数在整个定义域内是增函数
b.正切函数在每个单调区间内都是增函数
c.每个单调区间都包括两个象限:
四、一或二、三 3.例题分析
【例1】求函数ytan(x2k,2k),kZ内都是增函数.
4)的定义域.
分析:我们已经知道了ytanz的定义域,那么ytan(x4)与ytanz有什么关系呢?令zx4,我们把ytan(x4)说成由ytanz和zx4复合而成。此时我们称ytan(x4)为复合函数,而把ytanz和zx4为简单函数
解:令zx4,那么函数ytanz 的定义域是z|zk,kZ 2
由 x4zk2,可得 xk4
所以函数ytan(x4)的定义域是{x|xk4,kZ}
解题回顾:这种解法可称为换元法,因此复合函数可通过换元法来求得。
练习1:求函数ytan(2x
【例2】不通过求值,比较下列各组中两个正切函数值的大小:
(1)与
;
4)的定义域。(学生板演。)(2)tan(1113)与tan(). 45分析:比较两个正切函数值的大小可联想到比较两个正、余弦函数值的大小。
比较两个正、余弦函数值的大小是利用函数的单调性来比较。注意点是应把相应的角化到正或余弦函数的同一单调区间内来解决.类比得到比较两个正切函数值的大小的解法
解:(1)90167173180
又 ∵ytanx,在(90,270)上是增函数
∴tan167tan17(2)∵tan(1111)tan=tan 44tan(13132)tantan 555又 ∵0<2<<,函数ytanx,x, 是增函数,5422221113)tan(). 即tan(54∴ tan4< tan解题回顾:比较两个正切型实数的大小,关键是把相应的角诱导到ytanx 的同一单调区间内,利用ytanx 的单调递增性来解决.
练习2:比较大小:
(1)tan138_____tan143(学生口答)(<)(2)tan(1317)_____tan()(学生板演)(>)45【例3】求f(x)tan2x的周期
3.总结提炼
(1)这节课我们采用类比的思想方法来学习正切函数的图象和性质
(2)正切函数的作图是利用平移正切线得到的,当我们获得一个周期上图象后,再利用周期性把该段图象向左右延伸、平移。
(3)正切函数的性质.
4.布置作业:作业:苏大资料“12.正切函数的图象与性质”.