二次函数图象和性质的教学反思

时间:2019-05-13 02:04:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数图象和性质的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数图象和性质的教学反思》。

第一篇:二次函数图象和性质的教学反思

二次函数图象和性质的教学反思

本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2009年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题

2、问题

3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。

这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学水平更上一个台阶。

第二篇:二次函数的图象与性质教学反思

2yaxc的图象与性质的教学反思 二次函数

增城二中赖灶兰

这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前

2yax置作业是前一天发给学生的,主要涉及如何作图、复习二次函数性质等问

题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,2yaxc的性质以及和二次函数yax只要是图象让学生感受2的联系与

区别。第三部分是通过练习和我的展示让学生锻炼了自我学习的能力和出题的能力。我的优点主要包括:

1、教态自然,能注重身体语言的作用,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点

4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。我的不足之处表现在:

1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。

2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。

4、备课不够细心,“图象”两个字变成“图像”。

5、课堂应急处理不够老练,同学提出的问题没有及时解答

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。

第三篇:二次函数的图象与性质教学反思

2yaxc的图象与性质的教学反思 二次函数

这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给

2yax学生的,主要涉及如何作图、复习二次函数性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究

2yaxc的能力。第二部分是学习探究,只要是图象让学生感受性质以及和二次函数yax的联系与区别。第三部分是通过练习和我的展示让学生锻炼了自我学习的能力和出题的能力。本节课的优点主要包括:

1、教态自然,能注重身体语言的作用,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点

4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规

2律,很形象,便于记忆。本节课的不足之处表现在:

1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。

2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。

4、备课不够细心,“图象”两个字变成“图像”。

5、课堂应急处理不够老练,同学提出的问题没有及时解答

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。

第四篇:二次函数的图象和性质教案

27.2.1 相似三角形的判定

(一)梅

一、教学目标

1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.

2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).

3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.

二、重点、难点

1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法

(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前

ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;

(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;

(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;

(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):

如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC

ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这

ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.

三、例题的意图

本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.

例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.

四、课堂引入

1.复习引入

(1)相似多边形的主要特征是什么?

(2)在相似多边形中,最简单的就是相似三角形.

在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.

ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.

反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.

ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】

三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.

五、例题讲解

例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.

(1)写出对应边的比例式;(2)写出所有相等的角;

(3)若AB=10,BC=12,CA=6.求AD、DC的长.

分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.

解:略(AD=3,DC=5)

例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.

分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.

ABACBCAB解:略(DE103).

六、课堂练习

1.(选择)下列各组三角形一定相似的是()

A.两个直角三角形 B.两个钝角三角形

C.两个等腰三角形 D.两个等边三角形

2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)

七、课后练习

1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.

3.如图,DE∥BC,)

(1)如果AD=2,DB=3,求DE:BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长. 教学反思

第五篇:二次函数的图象和性质

二次函数的图象和性质(第一课时)教学案例

函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,学习起来非常困难。虽然,函数图像将函数的数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,但在没有信息技术支持下的教学,研究函数图像对教师来讲也是较为困难的一件事。

二次函数教学时间约为 10课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.

二、教学目标:

知识技能

1.探索并归纳二次函数的定义;

2.能够表示简单变量之间的二次函数关系.

数学思考:

1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;

2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

解决问题:

1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。

情感态度:

1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;

2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;

3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.

三、教学重点、难点:

教学重点: 1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系.

教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.

四、教学方法:教师引导——自主探究——合作交流。

五:教具、学具:教学课件

六、教学媒体:计算机、实物投影。

七、教学过程:

[活动1] 温故知新,引出课题。

师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?

生:学过正比例函数,一次函数,反比例函数.

师:那函数的定义是什么,大家还记得吗?

生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.

师:能把学过的函数回忆一下吗?

生:可以。

一次函数y=kx+b(其中k、b是常数,且k≠0)

正比例函数y=kx(k是不为0的常数)

反比例函数y=k/x(k是不为0的常数)

师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗?

生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。

师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.

师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。

设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。

[活动2]创设情境 探究新知:

问题

1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?

2.多边形的对角线数 d 与边数 n 有什么关系?

n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。

3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是件,即两年后的产量为。

4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢?

5.观察上面的三个函数,从解析式看有什么共同点?

师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。

定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。

2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好

奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。

[活动3] 例题学习内化新知

问题

例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项。

(1)y=3(x-1)²+1(2)y=x+5

(3)s=3-2t²(4)y=(x+3)²-x²

(5)y=-x(6)v=10∏r²

2例2,函数 y=(m-3)x-3x+5

(1)m取什么值时,此函数是正比例函数?

(2)m取什么值时,此函数是二次函数?

师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。

教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。

设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。

[活动4] 练习反馈巩固新知

问题:

(1)P80.练习1、2

m-2(2)若y=3x+6x-4 是二次函数,求m的值.

师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;

教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。

设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性;

八、自主小结,深化提高:

请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。

设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。

九、分层作业,发展个性:

十、教学反思:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺

利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。

下载二次函数图象和性质的教学反思word格式文档
下载二次函数图象和性质的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《反比例函数的图象和性质》教学反思

    《反比例函数的图象和性质》教学反思 《反比例函数的图象和性质》教学反思1 在本节授课过程中,教学环节展开是顺畅的,学生在教师引导下,能够说出一次函数的图象特征及性质,并通......

    《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思

    《二次函数y=ax+k、y=a(x-h)的图象和性质》教学反思 龙潭镇第一初级中学 黄海东 在讲授了二次函数y=ax2+k、y=a(x-h)2的图象时,有点感触: 1、先诱导学生比较二次函数y=ax2+k与二次......

    (教案)二次函数图象和性质复习教案(共五篇)

    《二次函数的图象和性质》复习课教案 海洲初级中学 初三数学备课组 内容来源:初中九年级《数学(上册)》教科书 教学内容:二次函数图像与性质复习课时:两课时 教学目标: 1.根据二......

    二次函数的图象与性质1(最终版)

    二次函数的图象与性质(1) 〖课标要求〗:会用描点画二次函数的图象,能根据图象说出二次函数的性质,并能运用其 性质解决有关问题。〖教学目标〗: 知识与技能:能够运用描点法作出函数......

    二次函数图象之教学反思(五篇范例)

    二次函数图象之教学反思 这堂课最大 的却失是教学手段单一,浪费了时间,降低了课堂效率,这一点在探讨a的取值决定抛物线的开口方向和大小时我深有感触,为了让学生自己去体会,画图......

    反比例函数的图象与性质教学反思(最终定稿)

    反比例函数的图象与性质教学反思(一)刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图象,二是由图像得出比例函数的性质。而难点......

    有理分式函数的图象及性质

    有理分式函数的图象及性质【知识要点】 1.函数yaxbcxd(c0,adbc)dcdc(2)值域:{y|y(1)定义域:{x|x单调区间为(,直线xdc,ydcacbx),(,+)(4)dc,ac,对称中心为点()(5)奇偶性:当ad0时为奇函数。(6......

    函数图象的教学反思

    《函数图象》的教学反思 广厚中心学校 石立军 本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学......