《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思

时间:2019-05-12 17:21:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思》。

第一篇:《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思

《二次函数y=ax+k、y=a(x-h)的图象和性质》教学反思

龙潭镇第一初级中学 黄海东

在讲授了二次函数y=ax2+k、y=a(x-h)2的图象时,有点感触:

1、先诱导学生比较二次函数y=ax2+k与二次函数y=ax2在形式结构上有什么异同点,很容易发现二次函数y=ax2+k与二次函数y=ax2后多加一个k,同一个自变量值相应函数值增加或减少常数K的绝对值,即是将二次函数y=ax2图象向上/向下平移常数K的绝对值个单位长度,至于向上还是向下就取决于K的正负性。

2、比较二次函数y=a(x-h)2和二次函数y=ax2的异同点,不难发现只有平方项的底数不同而已,也就是说对于同一个函数值相应自变量由0变为h,我们清楚知道改变自变量值就相当于左/右平移,把问题实质转向看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点坐标,再看平移的问题。如二次函数y=a(x-h)2的顶点坐标为(0,h)和二次函数y=ax2的顶点坐标为(0,0), 由坐标(0,0)变成坐标(0,h)相当于把顶点从(0,0)平移到(0,h),至于左/右平移就看h的正负性,h正就往右移,相反就往左移。

通过本节课我觉得:

1、要想教好数学单凭经验是远远不够的,一定要让同学动起来;

2、抛物线平移问题实质就是其顶点平移问题。22

第二篇:22.1.4二次函数y=ax2+bx+c的图象教学反思

22.1.4二次函数y=ax+bx+c的图象教学反思

今天讲授二次函数y=ax2+bx+c的图象第1课时,首先回顾二次函数顶点式的旧知,通过回顾旧知的相关问题,使学生体会建立二次函数对称轴和顶点坐标公式的重要性,然后以例题的形式推导二次函数y=ax2+bx+c的对称轴和顶点坐标公式。在完成上述的教学内容后,结合本班的实际,主要有以下几点反思: 1.一定要留足时间让学生自己作出二次函数的图象

可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观察、分析图象,从而不让学生画图象或者只是简单的画一两个。这种做法看上去好像更加突出了重点、难点,却没有给学生探索与发现的过程,造成学生对于二次函数性质的理解停留在表面,知识迁移相对薄弱,不利于培养学生自主研究二次函数的能力。这将对后面的学习造成困难。所以在教学过程中,一定要留足时间,让学生一边作图,一边发现,而不是教师给出图象,让学生观察。2.相信学生并为学生提供充分展示自己的机会

在归纳二次函数性质的时候,也要充分的相信学生,鼓励学生大胆的用自己的语言进行归纳,因为学生自己的发现远远比老师直接讲解要深刻得多。在教学过程中,要注重为学生提供展示自己聪明才智的机会,这样也利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。3.注意改进的方面

在让学生归纳二次函数性质的时候,学生可能会归纳得比较片面或者没有找出关键点,教师一定要注意引导学生从多个角度进行考虑,而且要组织学生展开充分的讨论,把大家的观点集中考虑,这样非常有利于训练学生的归纳能力。

第三篇:《函数y=Asin(ωx+φ)的图象》的教学反思

《函数y=Asin(ωx+φ)的图象》的教学反思

数学组 张淑文

教师不能只把教案写得详细周全,满足于“今天我上完课了,改完作业了,完成教学任务了。”而应该常常反思自己的教育教学行为,记录教育教学过程中的所得、所失、所感,不断创新,不断地完善自己,不断提高教育教学水平。新课程标准要求我们将新理念转化为实际的教学行为,要有效地实现知识与技能,过程与方法,情感、态度与价值观的三位一体的课程目标。

这次公开课我讲的是人教版高中数学必修(4)第一章第五节的内容──函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象是高中数学的重点内容,是三角函数知识解决实际问题的重要工具。经过这次教研活动,在展示自己的基础上,对公开课作了认真准备,有了一定的提高同时发现了自身存在的不足,需要我在今后的教学实践中去不断的积累和完善。本着新课标的精神,我浅谈一下我对这节公开课的几点反思:

1、创设情境、激发学生的兴趣。

长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学, 所以我从一开始就引入物理的内容:简谐运动中单摆对平衡位置的位移y与时间x的关系、交流电的电流y与时间x的关系等都是形如y=Asin(ωx+φ)的函数(其中A, ω, φ都是常数)。演示课件《弹簧振子位移——时间的图象》,这有助于学生认清函数y=Asin(ωx+φ)与正弦函数的图象内在联系,并把有探究价值的问题留给学生,激发学生探求知识的强烈欲望和创新意识.

2.钻研教材、建构符合学生认知的教学设计

应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的任务等等,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们要更高层次前进。平时布置任务时,让优生做完基本的任务要求,再加上两三个有难度的要求,让学生多多思考,提高思考含量。对于学习有困难的学生,则要降低任务要求,努力达到基本要求。

教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者,丰富学生的学习方式、改进学生的学习方法,这些都是高中数学课程追求的基本理念,首先,我试图将学生的主体性得到充分体现,让他们自己探索总结由正弦函数图象到函数y=Asin(ωx+φ)的图象变化规律。让学生自己感受发现问题——分析问题——解决问题的过程,培养他们科研素质。而我作为学生学习的引导者、组织者和合作者.学生不再是知识的接受器,教学完全建立在学生认知水平基础之上.最后由学生自己观察,分析出变化趋势,总结规律。课后,我思考是否能让学生的主体性发挥的更彻底一些,在创设教学情景方面,作为学生学习的引导者、组织者,我与老教师的差距是明显的,比如在课堂上,在由函数y=sin(x+φ)的的函数图象到函数y=sin(ωx+φ)的图象图象变换的规律总结上,教师很自然的想到把曲线的纵坐标不变,横坐标伸长或缩短到原来的1倍,但是学生往往只能发现五个“特殊点”的变化,而认识不到整个函数的变化趋势,变化多少?是变化倍还是变化倍?这时候就需要教师的引导,而我当时感1觉是引导少了一些传授多了一些,老教师的课我也经常听,感到在对学生的启发引导我还要下功夫。

3.尊重学生,突出评价的激励和发展功能

数学教育是学生真切生活的体验,是师生情感的交流,是学生持续发展的体现.只有在民主、平等的气氛中,学生的言行才能得到尊重与宽容。学生天生好问,但由于知识经验、思维能力有限,有时的回答可能显得幼稚,教学中,应该不急于将结果直接呈现给学生,让学生观察、归纳、猜想、论证,处处闪烁着学生的思维火花.有学生和教师,学生与学生之间的平等对话,处处体现出教师以人为本,尊重学生个性差异,关注学生未来发展的理念。但是在注重和学生的交流这一点上我是做得很不够,这方面,我欠缺在尊重学生个性差异,通过课堂的提问,很少由学生的个性差异出发,而脑海中对每个学生以“他掌握了”“他没掌握”或“他哪里没掌握”作为评价选项,而没有注重学生个性差异而加以引导。通过这次教研活动,特别是这节公开课,感觉到自身的不足,在今后的教学中还应该多干、多想、多积累。

4、借助几何画板,多途径解决数学问题,拓展学生视野。本节课若采用传统的方法讲授,作图量大,耗时多。所以,本人主要运用计算机中“几何画板”软件探究“函数y=Asin(ωx+φ)的图象变换”的课例。借助信息技术强大的作图和分析功能,让学生充分利用“几何画板”的动画功能,对其三角函数图象的变化能直接进行“数学实验”的操作,培养学生探究和解决实际问题的能力充分体现数学源于实践,源于生活;充分体现“以学生发展为本”的新课标要求。由y=sinx到y=Asin(ωx+φ图象变换是一个动态的过程。借助几何画板的课件演示可以直观地让学生感受变换的过程,加深对变换的理解。当学生用利用几何画板来自已输入各个参数,可以既可以从形的角度解决图象的变换,又要可以检验数学推理是否正确。

通过这堂研讨课,让我认识到作为教学活动的主导者,只有在日常的教学中不断加强自身的专业修养、勇于创新,才能优化课堂教学,提高课堂教学效果。

5、与老教材相比有优越也有瑕疵

以前该部分内容的教学通常是通过取值、列表、描点、画图然后静态的让学生观察、总结,最后得出它们之间图象变化的特点,不仅教学内容少,而且课时多(以前至少需要2课时)、课堂气氛枯燥、学生参与的活动少、学习的积极性较低.通过信息技术的使用,改变常规教学中处理方式,通过几何画板的辅助教学演示,使得振幅变换、伸缩变换、平移变换变得形象、直观,学生易于理解和掌握,不仅一节课完成了三种变换而且学生的兴趣浓厚、参与活动多、课堂气氛活跃,使课堂教学落到了实处,主体作用得到了真正的体现,综合能力和素质也得到了培养,这充分体现了信息技术具有的优势.但值得商榷的是:原来教学的“五点作图法”绘制函数图象,再讨论参数所起的作用,这里用技术马上就画出函数图象,并观察规律得出结论,学生可能会怀疑真的是如此?这时可用“五点作图法”来确定

最后,有时侯想尽量让学生喜欢数学,在上课之前,告诉自己要面带微笑,要讲得行云流水。但有时还会有不尽人意的地方。

“吾日三省吾身”,“学而不思则罔,思而不学则怠。”通过教学反思我会不断提高我的教学水平,成长为一名优秀的人民教师。

第四篇:26、2二次函数y=ax2+k的图象与性质教案

26.2二次函数y=ax2+k的图象与性质

一.教学目标 1.知识与能力

能够作出函数y=ax2+k的图象,并能够理解函数y=ax2+k与y=ax2之间的关系,理解a、k对二次函数图象的影响;能够正确说出函数图象的开口方向、对称轴和顶点坐标。2.过程与方法

通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身的特点的认识和对二次函数性质的理解;经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力。3.情感态度与价值观

通过动手操作,激发学生的学习兴趣,在互动中让学生学会和他人合作、交流,同时让学生在猜想与探究中,体验学习的快乐。二.教材分析

二次函数是描述变量之间关系的重要数学模型。它的图象是抛物线,通过前两节课的学习,大家不仅会画简单的抛物线,而且还能够通过观察图像了解抛物线的一些性质。

本节课通过对二次函数y=ax2+k的图象的作法和性质的过程探索,进一步将函数的表格、关系式、图像三者联系起来,逐步积累研究函数的图象和性质的经验。

在教学中,运用类比的学习方法,通过与y=ax2的图象和性质的比较,总结出它们的异同,从而更进一步地掌握不同形式的二次函数的图象和性质,三.教学重点

能作出y=ax2+k的图象,并能够比较它与y=ax2的异同,理解a与k对于二次函数图象的影响,能说出函数y=ax2+k的图象的开口方向、对称轴和顶点坐标。四.教学难点

能够作出函数y=ax2+k的图象,并总结其性质,还能和函数y=ax2作比较,五.教学准备 多媒体 六.教学过程

(一)、创设问题情境,引出新课

上节课,我们一起学习了函数y=ax2的图象的画法,了解了它们的图象的一些性质,请你告诉大家函数y=2x2与y=-x2图象有哪些相同点和不同点? 提出问题,引导学生回顾已学的知识。并追问:

你知道y=2x2+1 y=2x2-1有哪些性质吗?它们的图象与y=2x2的图象有什么关系?

积极回忆已学的知识,并思考回答

(板书课题)

设计意图:对于函数y=ax2(a>0)图象性质加以总结。这里取a为正,负数对比,不仅进一步复习巩固,同时为今天运用类比教学打下铺垫,提问时分层回答,不断补充,体现合作,互助。

(二)、师生互动,探求新知 问题一(多媒体展示)

在同一平面直角坐标系中,怎样画出函数y=2x2, y=2x2+1 和y=2x2-1的图象呢? 1.培养学生的自学能力独立思考问题的习惯。提出问题1,组织学生自学填1.培养学生的自学能力独立思考问题的习惯。

2.能够将自己的想法说给同伴听训练孩子的语言表达能力。表、描点、画图个别指导,展示学生作品,指出作图中不足之处。

学生经历列表,描点,连线的过程,作出函数图象,认真观察并注意聆听老师的指导,观察表格中的数据。

设计意图:1.规范作图,注意抛物线的对称性。

2.通过表中的数据体现出来的规律让学生发现猜测、验证,重视学习过程,体验表格、关系式、图表三者之间的联系。

观察

(一)1.函数y=2x2,y=2x2+1和y=2x2-1的图象,它们的开口方向如何?顶点坐标、对称轴分别是多少?

对于同一个x的值,对应的函数y=2x2,y=2x2+1

与y=2x2-1的值有什么关系?三个函数图象在位置上有什么关系?

当x分别取何值时函

数y=2x2, y=2x2+1与

y=2x2-1有最小值?最小值是多少呢?

4.你还能发现哪些结论大胆的说一说。

教师提问并对学生回答的情况给予适当的点评与补充,并对学生的好的回答给予积极的回应适当的夸奖 2.教师展示多媒体。

独立思考自主探究,得到答案,认真倾听他人的回答,取长补短。设计意图:

1、过观察函数图象,使每个学生都能够说出y=2x2,y=2x2+1与 y=2x2-1 的图象的开口方向,对称轴和顶点坐标。

2、直观的函数图象体会y=2x2,y=2x2+1与y=2x2-1的图象之间的关系可以通过平移得到。

3、解y=2x2,y=2x2+1

与y=2x2-1的最值。

4、励大家将自己发现的结论与大家交流,使每个人都有不同的收获,但教师在肯定保护学生个性的同时还提出了规范和严谨 观察

(二)(多媒体展示)

比较函数y=2x2,y=2x2+1 与y=2x2-1的图象的性质有何相同点有和不同点? 1.组织学生独立思考与合作交流相结合。

2.倾听学生的回答并积极地给予点评或纠正。3.利用多媒体进行归纳与整理。

独立思考自主探究,得到答案,认真倾听他人的回答,取长补短。设计意图:

1.培养学生的自学能力独立思考问题的习惯。

2.能够将自己的想法说给同伴听训练孩子的语言表达能力。3.让孩子学会发散地思考问题,也要学会归纳和总结。想一想

二次函数y=2x2,y=2x2+1和 y=2x2-1的图象有什么联系?能通过怎样的变换得到?

1.展示问题 2.多媒体展示几何画板软件,让图象动起来,更加直观。认真观察教师演示,用心思考、总结。设计意图:

培养学生的观察能力 问题二

在同一个平面直角坐标系中,怎样画出y=-x2 y=-x2+1与y=-x2+1的图象呢?

在学生对以上的问题思考与总结后提出该问题。大胆猜测并动手验证。设计意图:

培养学生的辩证思维能力,诉学生所有的结论都必须用自己的实践来验证,知识必须用自己的实际行动来获取。归纳总结

1.抛物线y=ax2 与y=ax2+k的形状、开口方向、开口大小相同,只是位置不同。抛物线y=ax2+k可以看成抛物线y=ax2 沿着y轴方向平移

k个单位得到,当k>0时向上平移

当k<0时向下平移

组织学生思考问题总结问题讨论问题回答问题,并板书总结。

独立思考,合作交流。独立思考合作交流总结归纳并在教师给出总结后阅读归纳总结的内容加深印象 设计意图:

培养学生的独立思考问题的能力,和与他人交流的能力,并学会对学习知识进行规范的总结语,详尽的反思。巩固练习课本

练习

巡视学生列表描点连线的过程,继续对作图的规范性给予指导 列表、描点连线,完成相应的填空并回答。

让每个学生不仅理解a>0时y=ax2 与y=ax2+k的图象和性质,同时也要理解a<0时函数y=ax2 与y=ax2+k的图象和性质。学习心得交流

1.这节课大家在交流,活动中有哪些体验和收获?

2.对函数y=ax2 与y=ax2+k的图的象的画法和性质还有哪些困惑? a、k的值对于二次函数图象和性质有何影响? 组织学生交流讨论

对学生在讨论中仍存在疑惑的东西给予解释 互相交流互相补充

每个学生接受能力不尽相同对知识的理解也不一样在学习心得交流过程中既是总结的过程更是查缺补漏的过程。布置作业

习题

26、第1题

新知训练,巩固所学的知识 板书设计

第五篇:第1课时 二次函数y=ax2+bx+c的图象和性质(教案)

22.1.4 二次函数y=ax2+bx+c的图象和性质

第1课时 二次函数y=ax2+bx+c的图象和性质

教学目标

【知识与技能】

1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;

2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;

3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】

通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度】

经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.教学重点

用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.教学难点

用配方法推导抛物线的对称轴与顶点坐标.教学过程

一、情境导入,初步认识

问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=标吗?

【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为

2x-6x+21的图象的开口方向,对称轴和顶点坐2本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.二、思考探究,获取新知 问题1你能把二次函数y=的图案的对称轴和顶点坐标.问题2在同一直角坐标系中用描点法画出二次函数y=的图象,并对比观察它们的图象有什么区别和联系.问题3请结合问题2的图象,指出当x取何值时,函数值y的最小值是多少?当x取何值时,函数y随x的增大而减小?当x取何值时,y随x的增大而增大?

【教学说明】在学生探索上述三个问题过程中,教师巡视,关注学生将二次函数一般式化为顶点式时可能出现的失误,予以诱导,引导学生在画y=12x-6x+21的图象时如何列表,这样列表有哪些好处等,并使学生在活动过程21

2x-6x+21化成y=a(x-h)2+k的形式吗?并指出它2121x-6x+21与y=x222中进一步认识到:要想正确认识二次函数y=ax2+bx+c,一定要将它利用配方法化成y=a(x-h)2+k的形式才行.三、问题引导,归纳结论

问题1抛物线y=ax2+bx+c的对称轴、顶点坐标是什么?你是如何做到的?

b解:yax2bxcax2xcabbb[ax22x]c2a2a2abbaxa·2c2a4ab4acb2ax2a4ab4acb2b∴抛物线y=ax+bx+c的对称轴是x=,顶点坐标是,.2a4a2a222222

【归纳结论】二次函数y=ax2+bx+c的图象及其性质:

【教学说明】针对所提出的问题,可能部分同学感到有些困难,因而教师在巡视过程中,应给予帮助,适当鼓励,让学生尽可能自主探究,最后师生共同探索结果.在结论归纳完成后,教师引导学生做课本第39页练习,可让学生自主完成,然后举手回答.问题2二次函数y=ax2+bx+c的图象的平移变换.已知将二次函数y=x2+bx+c的图象先向左平移3个单位,再向上平移2个单位得二次函数y=x2-2x+1的图象,求b和c.分析:要求b与c,需先求函数y=x2+bx+c的关系式,要求关系式,可先求出顶点坐标;根据两抛物线的平移情况,可确定顶点坐标.解:∵y=x2-2x+1=(x-1)2,∴抛物线y=x2-2x+1的顶点为(1,0).根据题意,此抛物线向下平移2个单位,向右平移3个单位,可得y=x2+bx+c,此时,(1,0)平移到(4,-2),即抛物线y=x2+bx+c的顶点是(4,-2),∴y=x2+bx+c=(x-4)2-2=x2-8x+14,∴b=-8,c=14.【教学说明】

1.可先回顾前面学过的y=ax2+k,y=a(x-h)2,y=a(x-h)2+k与y=ax2的图象的平移关系,引导学生思考,交流,探索结果,然后师生共同探讨总结规律:抛物线y=a(x-h)2+k在平移时,a不变,只是h或k发生变化,因此,研究抛物线的平移问题,关键是准确求出抛物线顶点的坐标,进而研究其顶点位置的变化情况.b4acb22.二次函数y=ax+bx+c(a≠0)通过配方可化为yax的2a4a

22形式,于是二次函数y=ax2+bx+c(a≠0)的图象可看成由抛物线y=ax2向左或右b4acb2|个单位,向上或向下平移|平移||个单位得到的.2a4a

四、运用新知,深化理解

1.二次函数y=ax2+bx+c的图象如图所示,则()A.a>0,b>0,c>0 B.a>0,b<0,c<0 C.a<0,b<0,c<0 D.a>0,b>0,c<0 2.把二次函数y=1/4x2-x+3用配方法化成y=a(x-h)2+k的形式为_____.3.二次函数y=-1/2x2-3x+5/2的图象的顶点坐标为_____.4.把抛物线y=ax2+bx+c,先向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-3x+5,则a+b+c=_____.【教学说明】1题中a、c的符号可直接通过观察图象获得,再由a的符号及对称轴x=-b/2a<0,可得到b的符号,这是本题的重难点,教学时教师可予以重点关注;

2、3两题较为简单,同学们可自主完成;4题中抛物线通过平移变换,得到y=x2-3x+5,逆推易得a、b、c的值,从而得到a+b+c,此类题型需熟练掌握二次函数的平移变换.五、师生互动,课堂小结

1.形如y=ax2+bx+c(a≠0)的二次函数的顶点坐标及对称轴的确定:(1)当二次函数y=ax2+bx+c容易配方时,可采用配方法来确定顶点坐标及对称轴方程;

(2)当a、b、c比较复杂时,可直接用公式来确定:

4acb2b抛物线y=ax+bx+c的对称轴为x,顶点坐标为.4a2a22.解决二次函数y=ax2+bx+c的平移问题时,应先将它化为y=a(x-h)2+k形式后,进行研究为好.课后作业

1.布置作业:教材习题22.1中选取.2.完成练习册中本课时练习的“课后作业“部分。教学反思

下载《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思word格式文档
下载《二次函数y=ax2+k、y=a(x-h)2的图象和性质》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数y=Asin(ωx+φ)图象说课稿(汇编)

    函数y=Asin(ωx+φ)图象说课稿1一、教材分析1、教材的地位和作用在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分......

    二次函数图象和性质的教学反思

    二次函数图象和性质的教学反思 本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本......

    二次函数y=ax^2+bx+c的图象教学设计[五篇模版]

    二次函数y=ax^2+bx+c的图象和性质教学设计 一、教学目标(一)知识目标 2 1.使学生会用描点法画出二次函数yaxbxc的图象; 2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升......

    2.4 二次函数y=ax2+bx+c的图象教案二

    二次函数y=ax2+bx+c的图象 教学目标 (一)教学知识点 1.体会建立二次函数对称轴和顶点坐标公式的必要性. 2.能够利用二次函数的对称轴和顶点坐标公式解决问题. (二)能力训练要求 1.通......

    二次函数的图象与性质教学反思

    2yaxc的图象与性质的教学反思 二次函数 增城二中赖灶兰这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手......

    二次函数的图象与性质教学反思

    2yaxc的图象与性质的教学反思 二次函数这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出......

    函数y=Asin(ω某+φ)图象的说课稿

    函数y=Asin(ω某+φ)图象的说课稿 函数y=Asin(ω某+φ)图象的说课稿1 一、教材分析1·教材的地位和作用在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变......

    二次函数y=ax2+bx+c的图象教学设计一(共5篇)

    二次函数y=ax2+bx+c的图象 教学过程 (一)明确目标 提问: 1.什么是二次函数? 2.我们已研究过了什么样的二次函数? 3.形如y=ax2的二次函数的开口方向,对称轴,顶点坐标各是什么? 通过这三......