九年级下册第二章二次函数的图象与性质1(定稿)

时间:2019-05-12 17:04:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《九年级下册第二章二次函数的图象与性质1(定稿)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《九年级下册第二章二次函数的图象与性质1(定稿)》。

第一篇:九年级下册第二章二次函数的图象与性质1(定稿)

总序第10个教案

第二章、二次函数

课 题 二次函数的图象与性质 第1课时 编写时间 2012年11 月 日 执教时间 2012年11 月 日 执教班级

教学目标:知识与技能:

1.能够运用描点法作出函数y=ax2(a>0)的图象。2.能根据图象认识和理解二次函数y=ax2(a>0)的性质。

过程与方法:

通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力。

情感态度价值观:

通过用描点法画出函数的图象,培养学生尊重客观事实的科学态度。

教学重点:会用描点法画出二次函数y=ax2(a>0)的图象以及探索函数性质。

教学难点:探索二次函数性质。教 具:电脑、课件

教学方法:分析法、讨论法、讲授法、练习法 学 具:

教学过程及教学内容设计:

一、创设情境,导入新课

1.什么是二次函数?一般形式是什么?

2.反比例函数的图象是什么呢?它有哪些性质? 3.二次函数的图象是什么呢?它又有哪些性质?

二、合作交流,解读探究(课件演示)1.画出二次函数y=x2的图象

21引导学生探索二次函数y=x2的图象的画法(列表、描点、21连线)

2.二次函数y=x2的图象的性质 A.引导学生探索二次函数y=x2的图象的性质

21B.归纳总结二次函数y=ax2(a>0)的图象画法和性质

三、应用迁移,巩固提高(课件演示例题)

1.类型之一----二次函数y=ax2(a>0)图象性质的运用 2.类型之二----二次函数y=ax2(a>0)图象性质的实际运用 例:已知正方形周长为Ccm,面积为Scm2。

(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求S=1cm2出时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2。

四、总结反思,拓展升华

五、当堂检测反馈 作业: 后记:

第二篇:二次函数的图象与性质1(最终版)

二次函数的图象与性质(1)

〖课标要求〗:会用描点画二次函数的图象,能根据图象说出二次函数的性质,并能运用其

性质解决有关问题。〖教学目标〗:

知识与技能:能够运用描点法作出函数yax2(a0)的图象,能够根据图象认识和理解

此函数的性质,初步建立二次函数表达式与图象之间的联系。

过程与方法:通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力,经历

探索二次函数的作法和性质的过程,获得利用图象研究函数性质的经验。

情感态度与价值观:通过用描点法画出函数图象,培养尊重客观事物的科学态度。

〖教学重点〗:二次函数yax2(a0)的图象和由图象概括的二次函数yax2的性质。

〖教学难点〗:二次函数yax2(a0)性质的应用。

〖教学流程〗:

一、导入

1、前面我们研究了一些具体的函数,根据你的经验,学习了二次函数的概念后,接着要研

究什么问题。

2、想一想,一次函数的性质是怎样研究的?那么二次函数的性质怎样借鉴这个经验来研究

呢?

二、自主学习

1、阅读课本24页到27页内容,划记重点内容,将不懂的问题记录在“我的疑问”栏目中。

2、小组合作讨论,完成学研指导案“学习新知”。

3、释疑和质疑预见性问题:

①用描点法画图象通常有哪些步骤?

②列表时应注意什么?

③连线时应注意什么?

三、合作探究

1、小组合作交流讨论,完成《学研指导案》中“合作探究”1、2、3题。

2、小组展示《学研指导案》中“合作探究”的3个问题。

教师点拔合作探究中存在的问题。

①用描点法画图象时先列表、再描点、最后连线。

②因为自变量的取值范围是全体实数,因此在列表时,要以0为中点,左右取值。

③连线时应注意按照横坐标由小到大的顺序把所描出各点用平滑的曲线连接起来。

四、归纳整理

21、二次函数yax(a0)的图象是一条开口向上的抛物线。它是轴对称图形,对称轴

是Y轴。

2、对称轴左边的部分,函数值随自变量的增大而减小;对称轴右边的部分,函数值随自变

量的增大而增大。

3、当x0时函数值最小。

五、自测评估

1、学生自主完成《学研指导案》中“课堂目标达成”的1~4题

2、学生展示解题结果。

3、教师点拔学生的解题过程

4、教师对学生的解题给予恰当的评价。

5、课后作业:完成《学研指导案》中“课后巩固提升”的练习题。

六、教学反思

第三篇:二次函数的图象和性质教案

27.2.1 相似三角形的判定

(一)梅

一、教学目标

1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.

2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).

3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.

二、重点、难点

1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法

(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前

ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;

(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;

(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;

(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):

如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC

ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这

ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.

三、例题的意图

本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.

例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.

四、课堂引入

1.复习引入

(1)相似多边形的主要特征是什么?

(2)在相似多边形中,最简单的就是相似三角形.

在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.

ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.

反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.

ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】

三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.

五、例题讲解

例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.

(1)写出对应边的比例式;(2)写出所有相等的角;

(3)若AB=10,BC=12,CA=6.求AD、DC的长.

分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.

解:略(AD=3,DC=5)

例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.

分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.

ABACBCAB解:略(DE103).

六、课堂练习

1.(选择)下列各组三角形一定相似的是()

A.两个直角三角形 B.两个钝角三角形

C.两个等腰三角形 D.两个等边三角形

2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)

七、课后练习

1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.

3.如图,DE∥BC,)

(1)如果AD=2,DB=3,求DE:BC的值;

(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长. 教学反思

第四篇:九年级数学二次函数的图象和性质教案23

九年级数学二次函数的图象和性质教案本资料为woRD文档,请点击下载地址下载全文下载地址

23.2二次函数y=ax2的图象和性质

教学目标:

.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质

教学难点:建立二次函数表达式与图象之间的联系

教学方法:自主探索,数形结合 教学建议:

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

教学过程:

一、认知准备:

.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:

(一)动手实践:作二次函数

y=x2和y=-x2的图象

(同桌二人,南边作二次函数

y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

(二)对照黑板图象议一议:

.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3.当x<0时,随着x的增大,y如何变化?当x>0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:

.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的两个函数y=x2

和y=-x2图象,根据图象回答:

(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由y=x2的图象如何得到y=-x2的图象?

(四)动手做一做:

1.作出函数y=2x2

y=-2x2的图象

(同桌二人,南边作二次函数y=-2x2的图象,北边作二次函数y=2x2的图象,两名学生黑板完成)

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2x2具有哪些性质吗?

(2)你能说出二次函数y=-2x2具有哪些性质吗?

(3)你能发现二次函数y=ax2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)

3.师生归纳总结二次函数y=ax2的图象及性质:

(1)二次函数y=ax2的图象是一条抛物线

(2)性质

a:开口方向:a>0,抛物线开口向上,a〈0,抛物线开口向下[

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a>0时,在对称轴的左侧(X<0),y随x的增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3x2

y=-5x2

有哪些性质

(2)说出二次函数y=4

x2和

y=-1/4x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)

.会画二次函数y=ax2的图象,知道它的图象是一条抛物线

2.知道二次函数y=ax2的性质:

a:开口方向:a>0,抛物线开口向上,a〈0,抛物线开口向下

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a>0时,在对称轴的左侧,y随x的增大而增大,a〈0时,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小。

第五篇:二次函数的图象与性质教学反思

2yaxc的图象与性质的教学反思 二次函数

增城二中赖灶兰

这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前

2yax置作业是前一天发给学生的,主要涉及如何作图、复习二次函数性质等问

题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,2yaxc的性质以及和二次函数yax只要是图象让学生感受2的联系与

区别。第三部分是通过练习和我的展示让学生锻炼了自我学习的能力和出题的能力。我的优点主要包括:

1、教态自然,能注重身体语言的作用,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点

4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。我的不足之处表现在:

1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。

2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。

4、备课不够细心,“图象”两个字变成“图像”。

5、课堂应急处理不够老练,同学提出的问题没有及时解答

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。

下载九年级下册第二章二次函数的图象与性质1(定稿)word格式文档
下载九年级下册第二章二次函数的图象与性质1(定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数的图象与性质教学反思

    2yaxc的图象与性质的教学反思 二次函数这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出......

    二次函数的图象和性质(小编整理)

    二次函数的图象和性质(第一课时)教学案例 函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,......

    二次函数图象和性质的教学反思

    二次函数图象和性质的教学反思 本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本......

    九年级数学下册 26_2 二次函数的图象与性质教案3 (新版)华东师大版

    26 . 2 二次函数的图象与性质 教学目标: 1、会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 2、会运用配方法确定二次函数图象的顶点、开口方向和对称轴......

    (教案)二次函数图象和性质复习教案(共五篇)

    《二次函数的图象和性质》复习课教案 海洲初级中学 初三数学备课组 内容来源:初中九年级《数学(上册)》教科书 教学内容:二次函数图像与性质复习课时:两课时 教学目标: 1.根据二......

    有理分式函数的图象及性质

    有理分式函数的图象及性质【知识要点】 1.函数yaxbcxd(c0,adbc)dcdc(2)值域:{y|y(1)定义域:{x|x单调区间为(,直线xdc,ydcacbx),(,+)(4)dc,ac,对称中心为点()(5)奇偶性:当ad0时为奇函数。(6......

    北师大版2.2 二次函数的图象与性质教案

    第二章 二次函数 2.2 二次函数的图象与性质(4) 一、知识点 1.用配方法将二次函数一般式化为顶点式的方法. 2.二次函数的对称轴和顶点坐标公式. 二、教学目标 知识与技能 1.掌......

    第1课时 正比例函数的图象与性质

    4.3 一次函数的图象 第1课时 正比例函数的图象与性质 【学习目标】 1.会作正比例函数的图象. 2.通过作图归纳正比例函数图象的性质. 【学习重点】 作正比例函数图象. 【学习难点......