第一篇:二次函数的图象性质应用结题报告
研究性学习活动结题报告
学 科:数学课 题:班 级:高一(指导教师:魏立珍
三角函数的图象性质应用1,2)班
研究性学习活动结题报告
组长: 组员:
指导老师:魏立珍
摘要:三角函数是高考的重点内容,学习中学生能够熟练地对三角函数解析式配方、确定其位置,并能研究其定义域、值域、单调性、最大(小)值、奇偶性等性质及其图像范围,培养学生分类讨论的思想。渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的思维能力。
正文:
三角函数的基本知识点的整理
小组成员心得体会
研究性学习是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这是研究性学习带给我们的乐趣所在。
研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加 研究性学习小组,给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。
研究性学习转变了我们的学习观念,改变学习方式。以我的小组而言吧,我们选择了似简单却又挺麻烦的课题——三角函数图像特点的应用。说它简单,最终成果只是一个简单的结果。但是,真是搞起来,要多方面考虑,还要收集有关资料,再加以运用,这自然会遇到许多麻烦,它给我们很大创新空间和实践机会,转变我们对学习和生活缺少独立思考新发现的一些依赖观念,改变我们“死读书”的学习方式,创造另一种学习的风气,营造更优的学习环境。这对学习科学文化的学生来说也是一个运用科学知识解决问题的良好机会。
研究性学习转变了我们的学习观念,改变学习方式。以我的小组而言吧,我们选择了似简单却又挺麻烦的课题——三角函数图像特点的应用。说它简单,最终成果只是一个简单的结果。但是,真是搞起来,要多方面考虑,还要收集有关资料,再加以运用,这自然会遇到许多麻烦,它给我们很大创新空间和实践机会,转变我们对学习和生活缺少独立思考新发现的一些依赖观念,改变我们“死读书”的学习方式,创造另一种学习的风气,营造更优的学习环境。这对学习科学文化的学生来说也是一个运用科学知识解决问题的良好机会。教师评价
研究性学习是一个崭新的课题,对于初初接触这个课题的新生来说,的确是件棘手的事情,一方面是因为以前没接触过,没什么经验,不知从何入手,另一方面是高中学习负担重,如何协调好学习和研究课题之间的比例关系,成了学生们烦恼的事。但是我们小组的成员这点做得不错,协调好两者,学习和研究课题双双丰收。从开题到结题,作为指导老师的我,并没有一步一步教他们如何做,而是提些学生没注意到的问题,在他们困惑之时引导他们如何拨开迷雾,指出他们研究中出现的一些小问题,毕竟研究性学习是要学生独立完成的,指导老师太过入戏的话,研究性学习就没多大意义了。总体来说,我们小组完成得不错,继续加油!
二〇一〇年十二月二十九日
第二篇:二次函数的图象和性质教案
27.2.1 相似三角形的判定
(一)梅
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.
2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
二、重点、难点
1.重点:相似三角形的定义与三角形相似的预备定理. 2.难点:三角形相似的预备定理的应用. 3.难点的突破方法
(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例,ABBCCA每个比的前
ABBCCA项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;
(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系.全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1.两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;
(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;
(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):
如△ABC∽△A′B′C′的相似比ABBCCAk,那么△A′B′C′∽△ABC
ABBCCA的相似比就是ABBCCA1,它们的关系是互为倒数.这
ABBCCAk一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
三、例题的意图
本节课的两个例题均为补充的题目,其中例1是训练学生能正确去寻找相似三角形的对应边和对应角,让学生明确可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素:即(1)对顶角一定是对应角;(2)公共角一定是对应角;最大角或最小的角一定是对应角;(3)对应角所对的边一定是对应边;(4)对应边所对的角一定是对应角;对应边所夹的角一定是对应角.
例2是让学生会运用“三角形相似的预备定理”解决简单的问题,这里要注意,此题两次用到相似三角形的对应边成比例(也可以先写出三个比例式,然后拆成两个等式进行计算),学生刚开始可能不熟练,教学中要注意引导.
四、课堂引入
1.复习引入
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△ABC与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCAk.
ABBCCA我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.
反之如果△ABC∽△A′B′C′,则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且ABBCCA.
ABBCCA(3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P42的思考,并引导学生探索与证明. 3.【归纳】
三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
五、例题讲解
例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.
解:略(AD=3,DC=5)
例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有ADAE,又由AD=EC可求出AD的长,再根据DEAD求出DE的长.
ABACBCAB解:略(DE103).
六、课堂练习
1.(选择)下列各组三角形一定相似的是()
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有(A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD= 10)
七、课后练习
1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式. 2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.
3.如图,DE∥BC,)
(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长. 教学反思
第三篇:二次函数的图象和性质
二次函数的图象和性质(第一课时)教学案例
函数是中学数学学习的重要内容,函数概念通过坐标系中的曲线上点的坐标反映变量之间的对应关系。这种变化与对应的思想对于中学生来讲,学习起来非常困难。虽然,函数图像将函数的数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,但在没有信息技术支持下的教学,研究函数图像对教师来讲也是较为困难的一件事。
二次函数教学时间约为 10课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.
二、教学目标:
知识技能
1.探索并归纳二次函数的定义;
2.能够表示简单变量之间的二次函数关系.
数学思考:
1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;
2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
解决问题:
1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。
情感态度:
1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;
2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;
3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.
三、教学重点、难点:
教学重点: 1.经历探索和表示二次函数关系的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系.
教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.
四、教学方法:教师引导——自主探究——合作交流。
五:教具、学具:教学课件
六、教学媒体:计算机、实物投影。
七、教学过程:
[活动1] 温故知新,引出课题。
师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?
生:学过正比例函数,一次函数,反比例函数.
师:那函数的定义是什么,大家还记得吗?
生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
师:能把学过的函数回忆一下吗?
生:可以。
一次函数y=kx+b(其中k、b是常数,且k≠0)
正比例函数y=kx(k是不为0的常数)
反比例函数y=k/x(k是不为0的常数)
师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗?
生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。
师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.
师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。
设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。
[活动2]创设情境 探究新知:
问题
1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?
2.多边形的对角线数 d 与边数 n 有什么关系?
n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。
3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是件,即两年后的产量为。
4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢?
5.观察上面的三个函数,从解析式看有什么共同点?
师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。
定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。
2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好
奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。
[活动3] 例题学习内化新知
问题
例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项。
(1)y=3(x-1)²+1(2)y=x+5
(3)s=3-2t²(4)y=(x+3)²-x²
(5)y=-x(6)v=10∏r²
2例2,函数 y=(m-3)x-3x+5
(1)m取什么值时,此函数是正比例函数?
(2)m取什么值时,此函数是二次函数?
师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。
教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。
设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。
[活动4] 练习反馈巩固新知
问题:
(1)P80.练习1、2
m-2(2)若y=3x+6x-4 是二次函数,求m的值.
师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;
教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。
设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性;
八、自主小结,深化提高:
请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。
设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。
九、分层作业,发展个性:
十、教学反思:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺
利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。
第四篇:二次函数图象和性质的教学反思
二次函数图象和性质的教学反思
本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。
首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。
接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2009年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题
2、问题
3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。
这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。
本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学水平更上一个台阶。
第五篇:(教案)二次函数图象和性质复习教案
《二次函数的图象和性质》复习课教案
海洲初级中学 初三数学备课组
内容来源:初中九年级《数学(上册)》教科书 教学内容:二次函数图像与性质复习课时:两课时 教学目标:
1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。2.会利用二次函数的图象判断a、b、c的取值情况。
3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。教材分析:
二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。学情分析
学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。教学过程
一、旧知回顾
1、已知关于x的函数y=
2、已知函数y=-2x-2,化为y=a
+3x-4是二次函数,则a的取值范围是.+k的形式:
此抛物线的开口向,对称轴为,顶点坐标 ; 当x= 时,抛物线有最 值,最值为 ;
当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。
3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到
抛物线的解析式为
4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是
5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。
6、抛物线经过三点(0,-1)、(1,0)、(-1,2),求该抛物线的解析式。
思维导图:
二、例题精讲:
1、(2016.新疆)已知二次函数y=
+bx+c(a)的图
象如图所示,则下列结论中正确的是()A、a>0 B、c<0 C、3是方程a+bx+c=0的一个根
D、当x<1时,y随x的增大而减小
2:二次函数图象过A,C,B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且OB=OC.(1)求C的坐标;
(2)求二次函数的解析式,并求出函数最大值。C
(3)一次函数的图象经过点C,B,求一次函数的解析式;
(4)根据图象,写出满足二次函数不小于一次函数值的x的取值范围;
(5)若该抛物线顶点为D,y轴上是否存在一点P,使得PA+PD最短?若存在,求出P点的坐标;
(6)若该抛物线顶点为D,x轴上是否存在一点P,使得PC+PD最短?若存在,求出P点的坐标;
三、教学反思