导数及其应用_知识点总结

时间:2019-05-12 20:34:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《导数及其应用_知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《导数及其应用_知识点总结》。

第一篇:导数及其应用_知识点总结

导数及其应用 知识点总结

1、函数{ EMBED Equation.DSMT4 |fx从到的平均变化率:

2、导数定义:在点处的导数记作;.

3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.

4、常见函数的导数公式:

①;②;③;④;

⑤;⑥;⑦;⑧

5、导数运算法则:;

6、在某个区间内,若,则函数在这个区间内单调递增;

若,则函数在这个区间内单调递减.

7、求解函数单调区间的步骤:

(1)确定函数的定义域;(2)求导数;

(3)解不等式,解集在定义域内的部分为增区间;

(4)解不等式,解集在定义域内的部分为减区间.

8、求函数的极值的方法是:解方程.当时:

如果在附近的左侧,右侧,那么是极大值;

如果在附近的左侧,右侧,那么是极小值.

9、求解函数极值的一般步骤:

(1)确定函数的定义域(2)求函数的导数f’(x)

(3)求方程f’(x)=0的根

(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格

(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况

10、求函数在上的最大值与最小值的步骤是:

求函数在内的极值;

将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.

第二篇:导数及其应用 知识点总结

导数及其应用 知识点总结

1、函数fx从x1到x2的平均变化率:

f

x2fx1

x2x1

xx0

f(x0x)f(x0)

x2、导数定义:fx在点x0处的导数记作y

f(x0)lim

;.

处的切线的斜率.

x03、函数yfx在点x0处的导数的几何意义是曲线

4、常见函数的导数公式:

yfx

在点

x0,fx0

①C'0;②(xn)'nxn1;③(sinx)'cosx;④(cosx)'sinx; ⑤(ax)'axlna;⑥(ex)'ex;⑦(log5、导数运算法则:

a

x)

'

1xlna

;⑧(lnx)'

1x

1

fxgxfxgx;

fxgxfxgxfxgx;

2

fxfxgxfxgx

gx02

gx3gx.

6、在某个区间a,b内,若fx0,则函数yfx在这个区间内单调递增;

若fx0,则函数yfx在这个区间内单调递减.

7、求解函数yf(x)单调区间的步骤:

(1)确定函数yf(x)的定义域;(2)求导数y'f'(x);(3)解不等式f'(x)0,解集在定义域内的部分为增区间;(4)解不等式f(x)0,解集在定义域内的部分为减区间.

8、求函数yfx的极值的方法是:解方程fx0.当fx00时:

'

1如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值; fx0,右侧fx0,那么fx0是极小值.

2如果在x0附近的左侧

9、求解函数极值的一般步骤:

(1)确定函数的定义域(2)求函数的导数f’(x)(3)求方程f’(x)=0的根

(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况

10、求函数yfx在a,b上的最大值与最小值的步骤是:

1求函数yfx在a,b内的极值;

2将函数yfx的各极值与端点处的函数值fa,fb比较,其中最大的一个是最大值,最

小的一个是最小值.

第三篇:高中导数知识点总结

世界一流潜能大师博恩?崔西说:“潜意识的力量比表意识大三万倍”。追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结,希望对大家有所帮助。

高中导数知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0

高中导数知识点2

一、求导数的方法

(1)基本求导公式

(2)导数的四则运算

(3)复合函数的导数

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

二、关于极限

.1.数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

2函数的极限:

当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

三、导数的概念

1、在处的导数.2、在的导数.3.函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是

注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A-1B-2C1D

四、导数的综合运用

(一)曲线的切线

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=;

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。

高中数学函数与导数知识点总结分享:

函数与导数

第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。

第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<>

第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

高中数学的学习方法

首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。

第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。

第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。

第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔

高中导数知识点总结

第四篇:高中数学人教版选修2-2导数及其应用知识点总结

六安一中东校区高二数学选修2-2期末复习

导数及其应用知识点必记

1.函数的平均变化率为f(x2)f(x1)f(x1x)f(x1)yf xxx2x1x

注1:其中x是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数yf(x)在xx0处的瞬时变化率是

f(x0x)f(x0)y,则称函数yf(x)在点x0处可导,并把这个极限叫limx0xx0xlim

做yf(x)在x0处的导数,记作f'(x0)或y'|xx0

3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;

常见的导数和定积分运算公式:若fx,gx均可导(可积),则有:-1-

6.用导数求函数单调区间的步骤:①求函数f(x)的导数f'(x)②令f'(x)>0,解不等式,得x的范围就是递增区间.③令f'(x)<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。(2)求函数f(x)的导数f'(x)(3)求方程f'(x)=0的根(4)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f/(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值

8.利用导数求函数的最值的步骤:求f(x)在a,b上的最大值与最小值的步骤如下: ⑴求f(x)在a,b上的极值;⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

9.求曲边梯形的思想和步骤

10.定积分的性质根据定积分的定义,不难得出定积分的如下性质:

性质1b1dxba a

b

a

b性质2 若f(x)0,xa,b,则f(x)dx0 ①推广:[f1(x)f2(x)afm(x)]dxf1(x)dxf2(x)dxaabbfm(x)ab

②推广:f(x)dxf(x)dxf(x)dxaac1bc1c2f(x)dx ckb

11定积分的取值情况:定积分的值可能取正值,也

可能取负值,还可能是0.(l)当对应的曲边梯形位于 x 轴上方时,定

积分的值取正值,且等于x轴上方的图形面积;

(2)当对应的曲边梯形位于 x 轴下方时,定

积分的值取负值,且等于x轴上方图形面积的相

反数;

(3)当位于 x 轴上方的曲边梯形面积等于

位于 x 轴下方的曲边梯形面积时,定积分的值为,且等于面积.

12.物理中常用的微积分知识(1度,速度的导数为加速度。(2)力的积分为功。

推理与证明知识点

13.归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称.......

为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。14.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。15.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。演绎推理的主要形式:三段论 16.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

17.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

18.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件.分析法和综合法常结合使用,不要将它们割裂开。19反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。反证法的思维方法:正难则反。矛盾(1)与已知条件矛盾:(2)与.....已有公理、定理、定义矛盾;(3)自相矛盾. 20

21*nnN第一个值时命题成立;(2)假设当n=k(k∈N,且k≥n0)时命题成立,00

证明当n=k+1时命题也成立.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确 注]:常用于证明不完全归纳法推测所得命题的正确性的证明。

数系的扩充和复数的概念知识点

22.复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,a叫实部,b叫....

虚部,数集Cabi|a,bR叫做复数集。

规定:abicdia=c且,强调:两复数不能比较大小,只有相等或不相等。

实数(b0)23.数集的关系:复数Z一般虚数(a0)

虚数(b0)纯虚数()

24.复数的几何意义:复数与平面内的点或有序实数对一一对应。

25.复平面:根据复数相等的定义,任何一个复数zabi,都可以由一个有序实数对(a,b)唯一确定。由于有序实数对(a,b)与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

26.求复数的模(绝对值)与复数z对应的向量OZ的模r叫做复数zabi的模(也叫绝对值)记作z或abi。由模的定义可知:zabia2b

227.复数的加、减法运算及几何意义①复数的加、减法法则:z1abi与z2cdi,则z1z2ac(bd)i。注:复数的加、减法运算也可以按向量的加、减法来进行。

②复数的乘法法则:(abi)(cdi)acbdadbci。因子

28.共轭复数:两复数abi与abi互为共轭复数,当b0时,它们叫做共轭虚数。常见的运算规律 abi(abi)(cdi)acbdbcad22i其中cdi叫做实数化22cdi(cdi)(cdi)cdcd

(1)z;

2(2)z2a,z2bi;2(3)zza2b2;(4)z;(5)zzR

(6)i4n1i,i

24n21,i4n3i,i4n41;2(7)

1i1i1ii;(8)i,i,i 1i1i(9)设13i23n1是1的立方虚根,则10,,3n2,3n31 2

第五篇:高二数学《导数》知识点总结

广大同学要想顺利通过高考,接受更好的高等教育,就要做好考试前的复习准备。如下是小编给大家整理的高二数学《导数》知识点总结,希望对大家有所作用。

1、导数的定义: 在点 处的导数记作.2.导数的几何物理意义:曲线 在点 处切线的斜率

①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式: ①;②;③;

⑤;⑥;⑦;⑧。

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

(2)求极值的步骤:

①求导数;

②求方程 的根;

③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

(3)求可导函数最大值与最小值的步骤:

ⅰ求 的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

下载导数及其应用_知识点总结word格式文档
下载导数及其应用_知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈导数的几点应用

    浅谈导数的几点应用 导数是解决数学问题的重要工具,很多数学问题如果利用导数探求思路,不仅能迅速找到解题的切入点,而且能够把复杂的分析推理转化为简单的代数运算,达到避繁就......

    导数应用复习

    班级第小组,姓名学号高二数学导数复习题8、偶函数f(x)ax4bx3cx2dxe的图像过点P(0,1),且在x1处的切线方程为yx2,求1.求下列函数的导数: (1)y(2x23)(x24)(2)yexxlnx (3)y1x2 sinx (4)y1234x......

    导数应用一例

    导数应用一例 石志群 13题:求一个正常数a,使得对于|x|≤1的所有x,都有x恒成立。 3 1333分析:x≤ +ax等价于3ax-3x+1≥0.令f(x)= 3ax-3x+1,则由对于|x|≤1的所有x,3 13都有x恒成立......

    应用导数证明不等式

    应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等......

    导数的应用(三)

    课题:导数的应用(三) 一、学习目标: 1.能利用导数解决函数的方程根的个数问题; 2.利用导数解决不等式问题五、达标训练: 二、重点、难点: 利用导数研究与函数的极值与最值有关的综合......

    导数总结归纳大全

    志不立,天下无可成之事! 类型二:求单调区间、极值、最值 例三、设x3是函数f(x)(xaxb)e (1) 求a与b的关系式(用a表示b) (2) 求f(x)的单调区间 (3) 设a0,求f(x)在区间0,4上的值域23x的一个......

    导数几何意义的应用

    七、导数几何意义的应用例15 (1)求曲线y= x11+ 在点(1,21)处的切线方程(2)已知曲线 (t为参数),求曲线在t=1处的法线方程。... .= += tarctanty)t1ln(x2 解 (1) 2)x1( 1x11y+ .= ′ .......

    导数的应用(构造法)

    导数的应用(构造法证明不等式)1.已知函数f(x)lnx(p0)是定义域上的增函数. (Ⅰ)求p的取值范围;(Ⅱ)设数列an的前n项和为Sn,且an2. 已知函数f(x)alnxax3在x=2处的切线斜率为1,函数g(x)......