第一篇:导数的应用(构造法)
导数的应用(构造法证明不等式)
1.已知函数f(x)lnx(p0)是定义域上的增函数.(Ⅰ)求p的取值范围;
(Ⅱ)设数列an的前n项和为Sn,且an
2.已知函数f(x)alnxax3在x=2处的切线斜率为1,函数g(x)xx(f(x)区间(2,3)内有最值,(Ⅰ)试判断函数g(x)在区间(2,3)内有最大值还是最小值,并求m的范围;(Ⅱ)证明不等式:ln(221)ln(321)ln(n21)12lnn!.32/2n1n,证明:Sn2ln(n1).m2)在3.已知函数f(x)1x
ax
3lnx(a0)在区间1,上为单调递增函数.(Ⅰ)求实数a的范围;(Ⅱ)证明:
4.已知函数f(x)ln(x1)k(x1)1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若f(x)0恒成立,求k的取值范围;(Ⅲ)证明:
ln23ln34lnnn1n(n1)4,(nN,n1).121nlnn112131n1,nN,n2.
第二篇:构造函数法在导数中的应用(小编推荐)
构造函数法在导数中的应用
“作差法”构造
证明不等式或解决不等式恒成立问题都可以利用作差法将不等式右边转化为0,然后构造新函数[F(x)],最后根据新函数[F(x)]的单调性转化为[F(x)min≥0]或者[F(x)max≤0来解决.]
例1 设函数[f(x)=x1+x],[g(x)=lnx+12].求证:当[0 ∵[F(x)=1+x-x1+x2-1x=-x2-x-11+x2?x<0.] ∴[F(x)]在(0,1]上单调递减.∵[F(1)=12-0-12=0,] ∴[F(x)]≥0,当且仅当[x=1]时,等号成立.∴当[0 恒成立问题中,求参数范围的问题,常常分离参数转化为[a≤F(x)min或者a≥F(x)max,]其中[F(x)]为构造的新函数.例2 若不等式[2x?lnx≥-x2+ax-3]恒成立,则实数[a]的取值范围是() A.(-∞,0)B.(-∞,4] C.(0,+∞)D.[4,+∞) 解析不等式[2x?lnx≥-x2+ax-3]恒成立,即[a≤2lnx+x+3x]在(0,+[∞])上恒成立.设[h(x)=2lnx+x+3x],则[h′(x)=(x+3)(x-1)x2(x>0)].当[x∈(0,1)]时,[h′(x)<0],函数[h(x)]单调递减; 当[x∈(1,+∞)]时,[h′(x)>0],函数[h(x)]单调递增.所以[h(x)min=h(1)=4].所以[a≤h(x)min=4].答案 B 根据题干的“结构特征”猜想构造 1.根据运算公式[f(x)?g(x)′=f(x)g(x)+f(x)g(x)]和[f(x)g(x)′][=f(x)g(x)-f(x)g(x)g(x)2来构造] 例3 已知函数[f(x)]的定义域是[R],[f(0)=2],对任意的[x∈R],[f(x)+f(x)>1]恒成立,则不等式[ex?f(x)][>ex+1]的解集为() A.(0,+∞)B.(-∞,0) C.(-1,+∞)D.(2,+∞) 解析构造函数[g(x)=ex?f(x)-ex],因为[g′(x)=ex?f(x)+ex?f(x)-ex=ex[f(x)+f(x)]-ex] [>ex-ex=0],所以[g(x)=ex?f(x)-ex]为[R]上的增函数.又[g(0)=e0?f(0)-e0=1],所以原不等式转化为[g(x)>g(0)],所以[x>]0.答案 A 例4 设函数[f(x)]满足[x2?f(x)+2x?f(x)=exx,][f(2)=][e28,]则当[x>0]时,[f(x)]() A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值又有极小值 D.既无极大值又无极小值 解析构造函数[F(x)=x2?f(x)] 则[f(x)=F(x)x2′=ex-2F(x)x3,] [令h(x)=ex-2F(x),则h(x)=ex(x-2)x.] [∴h(x)]在(0,2)上单调递减;在[(2,+∞)]上单调递增.[∴h(x)≥h(2)=0].[∴f(x)≥0,∴f(x)在(0,+∞)上单调递增.] 答案 D 2.根据已知条件等价转化后再以“形式”来构造 运用下列形式的等价变形构造:分式形式[f(b)-f(a)b-a<1,] 绝对值形式[f(x1)-f(x2)][≥4x1-x2],指对数形式[1×2×3×4ׄ×n≥en-sn.] 例5 设函数[ f(x)=lnx+mx],[m∈R].(1)当[m=e]([e]为自然对数的底数)时,求[f(x)]的极小值; (2)讨论函数[g(x)=f(x)-3x]零点的个数; (3)若对任意[b>a>0],[f(b)-f(a)b-a<1]恒成立,求[m]的取值范围.解析(1)当[m=e]时,[f(x)=lnx+ex],则[f(x)=x-ex2].∴当[x∈(0,e)],[f(x)<0],[f(x)]在[(0,e)]上单调递减; 当[x∈(e,+∞)],[f(x)>0],[f(x)]在[(e,+∞])上单调递增.∴[x=e]时,[f(x)]取得极小值[f(e)=lne+ee]=2.∴[f(x)]的极小值为2.(2)由题设知,[g(x)=f(x)-x3=1x-mx2-x3(x>0)].令[g(x)=0]得,[m=-13x3+x(x>0)].设[φ(x)][=-13x3+x(x>0)],则[φ(x)=-x2+1=-(x-1)(x+1)],当[x∈(0,1])时,[φ(x)]>0,[φ(x)]在(0,1)上单调递增; 当[x∈(1,+∞)]时,[φ(x)]<0,[φ(x)]在(1,+∞)上单调递减.∴[x=1]是[φ(x)]的惟一极值点,且是极大值点.因此[x=1]也是[φ(x)]的最大值点.∴[φ(x)]的最大值为[φ(1)]=[23].又[φ(0)]=0,结合[y=φ(x)]的图象(如图)可知,①当[m>23]时,函数[g(x)]无零点; ②当[m=23]时,函数[g(x)]有且只有一个零点; ③当[0 ④当[m≤0]时,函数[g(x)]有且只有一个零点.综上所述,当[m>23]时,函数[g(x)]无零点; 当[m=23]或[m≤0]时,函数[g(x)]有且只有一个零点; 当[0 ∴[m]的取值范围是[14,+∞].例6 已知[f(x)=(a+1)lnx+ax2+1],(1)讨论函数[f(x)]的单调性; (2)[设a<-1,?x1,x2∈(0,+∞),][f(x1)-f(x2)][≥4x1-x2]恒成立,求[a]的取值范围.解析(1)[∵x∈(0,+∞),∴f(x)=2ax2+a+1x.] [①当a≥0时,f(x)>0,f(x)在(0,+∞)上单调递增.②当-10时,f(x)在(0,-a+12a)上单调递增;当f(x)<0时,f(x)在(-a+12a,+∞)上单调递减.③当a≤-1时,f(x)<0,f(x)在(0,+∞)上单调递减.] (2)不妨设[x1≤x2,]由(1)可知,当[a<-1]时,[f(x)]在[(0,+∞)上单调递减.] [则有f(x1)-f(x2)≥4x1-x2] [?f(x1)-f(x2)≥-4(x1-x2)] [?f(x1)+4x1≥f(x2)+4x2.] [构造函数g(x)=f(x)+4x,则g(x)=a+1x+2ax+4≤0].[∴a≤(-4x-12x2+1)min.] [设φ(x)=-4x-12x2+1,x∈(0,+∞),] [则φ(x)=4(2x-1)(x+1)(2x2+1)2.] [故φ(x)在(0,12)上单调递减;][在(12,+∞)上单调递增].[∴φ(x)min=φ(12)=-2.] [∴a≤-2.] 导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1 从其导数入手即可证明。 【解】f(x)1x1 x1x1∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数 当x0时,f(x)0,即f(x)在x(0,)上为减函数 故函数f(x)的单调递增区间为(1,0),单调递减区间(0,) 于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0 ∴ln(x1)x(右面得证),现证左面,令g(x)ln(x1)111x1,则g(x) 22x1x1(x1)(x1)当x(1,0)时,g(x)0;当x(0,)时,g(x)0,即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数g(x)在(1,)上的最小值为g(x)ming(0)0,110 x1111ln(x1)x ∴ln(x1)1,综上可知,当x1时,有x1x1∴当x1时,g(x)g(0)0,即ln(x1) 2、作差法构造函数证明 【例2】已知函数f(x) 图象的下方; 分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,即只需证明在区间(1,)上,恒有122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的 23122xlnxx3,23122xlnxx3成立,设F(x)g(x)f(x),x(1,),考虑到23F(1)10 6要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。【解】设F(x)g(x)f(x),即F(x)22312xxlnx,321(x1)(2x2x1)(x1)(2x2x1)则F(x)2xx= 当x1时,F(x)= xxx从而F(x)在(1,)上为增函数,∴F(x)F(1)∴当x1时 g(x)f(x)0,即f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x) 3、换元法构造函数证明 10 623x的图象的下方。31111)23 都成立.nnn1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒 n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。233213x3(x1)2【解】令h(x)xxln(x1),则h(x)3x2x在x(0,)上恒正,x1x1322 所以函数h(x)在(0,)上单调递增,∴x(0,)时,恒有h(x)h(0)0,即xxln(x1)0,∴ln(x1)xx 对任意正整数n,取x32231111(0,),则有ln(1)23 nnnn【警示启迪】当F(x)在[a,b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可. 4、从条件特征入手构造函数证明 【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证: af(a)>bf(b) 【解】由已知 xf(x)+f(x)>0 ∴构造函数 F(x)xf(x),' 则F(x) xf(x)+f(x)>0,从而F(x)在R上为增函数。 ab ∴F(a)F(b)即 af(a)>bf(b)【警示启迪】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明。若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到是一个商的导数的分子,平时解题多注意总结。 5、主元法构造函数 例.(全国)已知函数f(x)ln(1x)x,g(x)xlnx(1)求函数f(x)的最大值; ab)(ba)ln2.2ab)中以b为主变元构造函数, 证明:对g(x)xlnx求导,则g'(x)lnx1.在g(a)g(b)2g(2(2)设0ab,证明 :0g(a)g(b)2g(设F(x)g(a)g(x)2g(ax'axax.)]lnxln),则F'(x)g'(x)2[g(222' 当0xa时,F(x)0,因此F(x)在(0,a)内为减函数.' 当xa时,F(x)0,因此F(x)在(a,)上为增函数.从而当xa时, F(x)有极小值F(a).因为F(a)0,ba,所以F(b)0,即g(a)g(b)2g(又设G(x)F(x)(xa)ln2.则G'(x)lnxlnab)0.2axln2lnxln(ax).2' 当x0时,G(x)0.因此G(x)在(0,)上为减函数.因为G(a)0,ba,所以G(b)0,即g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x x解:(1)f′(x)= ae-x,∵f(x)在R上为增函数,∴f′(x)≥0对x∈R恒成立,-x-x-x-x-x 即a≥xe对x∈R恒成立 记g(x)=xe,则g′(x)=e-xe=(1-x)e,当x>1时,g′(x)<0,当x<1时,g′(x)>0. 知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a≥1/e, 即a的取值范围是[1/e, + ∞)(2)记F(X)=f(x)-(1+x)=exx12x1x(x0)2x x 则F′(x)=e-1-x, 令h(x)= F′(x)=e-1-x,则h′(x)=e-1 当x>0时, h′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0 即F′(x)>0 ,∴F(x)在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x. 7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)11xe1x2 8.构造形似函数 例:证明当bae,证明ab ba 例:已知m、n都是正整数,且1mn,证明:(1m)(1n) nm4 【思维挑战】 1、设a0,f(x)x1ln2x2alnx 求证:当x1时,恒有xlnx2alnx1 2、已知定义在正实数集上的函数 f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22求证:f(x)g(x) 3、已知函数f(x)ln(1x)xb,求证:对任意的正数a、b,恒有lnalnb1.1xa4、f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有() (A)af(b)≤bf(a)(C)af(a)≤f(b) 【答案咨询】 1、提示:f(x)1 ∴ (B)bf(a)≤af(b)(D)bf(b)≤f(a)2lnx2a2lnx1,当x1,a0时,不难证明xxxf(x)0,即f(x)在(0,)内单调递增,故当x1时,f(x)f(1)0,∴当x1时,恒有xlnx2alnx1 123a222、提示:设F(x)g(x)f(x)x2ax3alnxb则F(x)x2a 2x(xa)(x3a)=(x0)a0,∴ 当xa时,F(x)0,x 故F(x)在(0,a)上为减函数,在(a,)上为增函数,于是函数F(x)在(0,)上的最小值是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x) 3、提示:函数f(x)的定义域为(1,),f(x)11x 1x(1x)2(1x)2∴当1x0时,f(x)0,即f(x)在x(1,0)上为减函数 当x0时,f(x)0,即f(x)在x(0,)上为增函数 因此在x0时,f(x)取得极小值f(0)0,而且是最小值 x1,即ln(1x)1 1x1xa1bab1 于是ln1 令1x0,则1bx1abab因此lnalnb1 a于是f(x)f(0)0,从而ln(1x) f(x)f(x)xf'(x)f(x)F(x) 4、提示:F(x),F(x),故在(0,+∞)上是减函数,由ab 02xxx有f(a)f(b) af(b)≤bf(a)故选(A)ab 合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:已知函数fxlnax1x3x2ax.(1)若2为yfx的极值点,求实数a的值; 3(2)若yfx在1,上增函数,求实数a的取值范围;(3)若a1时,方程f1x1x3b有实根,求实数b的取值范围。x 变量分离直接构造函数 抓住问题的实质,化简函数 1、已知fx是二次函数,不等式fx0的解集是0,5,且fx在区间1,4上的最大值12.(1)求fx的解析式; (2)是否存在自然数m,使得方程fx370在区间m,m1内有且只有两个不等的x实数根?若存在,求出所有m的值;若不存在,请说明理由。 变式练习:设函数fxx6x5,xR,求已知当x1,时,fxkx1恒 3成立,求实数k的取值范围。 抓住常规基本函数,利用函数草图分析问题 例: 已知函数fxnlnx的图像在点P(m,fm)处的切线方程为yx, 设gxmxn2lnx.x(1)求证:当x1时,gx0恒成立;(2)试讨论关于x的方程mxngxx32ex2tx根的个数。x第 1 页 共 1 页 一次函数,二次函数,指对数函数,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。 复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数fx单调递增。 (1)求实数a的值.(2)若关于x的方程f2xm有3个不同的实数解,求实数m的取值范围.(3)若函数ylog2fxp的图像与坐标轴无交点,求实数p的取值范围。复合函数尤其是两次复合,一定要好好掌握,构造两种函数逐层分解研究,化繁为简,导数仍然是主要工具。 1423xxax22x2在区间1,1上单调递减,在区间1,2上43 导数—构造函数 一:常规的构造函数 例一.若sin3cos3cossin,02,则角的取值范围是()(A)[0,4] (B)[5,] (C)[,] 4(D)[34,2) xyxy变式、已知3355成立,则下列正确的是() A.xy0 B.xy0 C.xy0 D.xy0 2变式.f(x)为f(x)的导函数,若对xR,2f(x)xf(x)x恒成立,则下列命题可能错误的是()A.f(0)0 B.f(1)4f(2)C.f(1)4f(2)D.4f(2)f(1) 二:构造一次函数 例 二、对于满足|a|2的所有实数a,求使不等式x2+ax+1>a+2x恒成立的x的取值范围.第 2 页 共 2 页 三:变形构造函数 例三.已知函数f(x)12xax(a1)lnx,a1. 2(Ⅰ)讨论函数f(x)的单调性; (Ⅱ)证明:若a5,则对任意x1,x2(0,),x1x2,有 例 四、已知函数f(x)(a1)lnxax21.(Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设a2,证明:对任意x1,x2(0,),|f(x1)f(x2)|4|x1x2|.四:消参构造函数 例 五、设函数fxxaln1x有两个极值点x1,x2,且x1x2. 2f(x1)f(x2)1. x1x2(I)求a的取值范围,并讨论fx的单调性;(II)证明:fx2 五:消元构造函数 例 六、已知函数fxlnx,gxex. (Ⅰ)若函数xfx12ln2. 4x1,求函数x的单调区间; x1(Ⅱ)设直线l为函数的图象上一点Ax0,fx0处的切线.证明:在区间1,上存在唯一的x0,使得直线l与曲线ygx相切. 第 3 页 共 3 页 六:二元合一构造函数 12axbx(a0)且导数f'(1)0 2(1)试用含有a的式子表示b,并求f(x)的单调区间;(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2)如果在函数图象上存在点M(x0,y0)(其中x0(x1,x2))使得点M处的切线l//AB,则称AB存在“跟随切线”。 xx2特别地,当x01时,又称AB存在“中值跟随切线”。试问:在函数f(x)上是否存在2两点A、B使得它存在“中值跟随切线”,若存在,求出A、B的坐标,若不存在,说明理由。例 七、已知函数f(x)lnx 七:构造函数解不等式 例 八、设函数f(x)=x32mx2m2x1m(其中m >-2)的图像在x=2处的切线与直线y=-5x+12平行; (Ⅰ)求m的值与该切线方程; (Ⅱ)若对任意的x1,x20,1,fx1fx2M恒成立,则求M的最小值;(Ⅲ)若a0, b0, c0且a+b+c=1,试证明: 例 九、设函数f(x)lnxpx1 (Ⅰ)求函数f(x)lnxpx1的极值点 (Ⅱ)当p0时,若对任意的x0,恒有f(x)0,求p的取值范围。 abc9 1a21b21c210ln22ln32ln42lnn22n2n1(Ⅲ)证明:2222(nN,n2) 234n2(n1) 例 十、证明:对任意的正整数n,不等式ln(1) 第 4 页 共 4 页 1n113都成立.2nn1、移项法构造函数 【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有1 2、作差法构造函数证明 【例2】已知函数f(x)1ln(x1)x x112xlnx.求证:在区间(1,)上,函数f(x)的图象在函数2g(x)23x的图象的下方; 31111)23 都成立.nnn 3、换元法构造函数证明 【例3】证明:对任意的正整数n,不等式ln(4、从条件特征入手构造函数证明 【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b) 第 5 页 共 5 页 导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有1 从其导数入手即可证明。 2、作差法构造函数证明 【例2】已知函数f(x) 图象的下方; 分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,即只需证明在区间(1,)上,恒有122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的 23122xlnxx3,23122xlnxx3成立,设F(x)g(x)f(x),x(1,),考虑到23F(1)10 6要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。 3、换元法构造函数证明 1111)23 都成立.nnn1 分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒 n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。 2332 4、从条件特征入手构造函数证明 【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证: af(a)>bf(b) 5、主元法构造函数 1x)x,g(x)xlnx 例.(全国)已知函数f(x)ln((1)求函数f(x)的最大值; (2)设0ab,证明 :0g(a)g(b)2g(6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2.212x 2(1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x 7.对数法构造函数(选用于幂指数函数不等式)例:证明当x0时,(1x)11xe1x2 8.构造形似函数 例:证明当bae,证明abba 例:已知m、n都是正整数,且1mn,证明:(1m)n(1n)m 【思维挑战】 1、设a0,f(x)x1ln2x2alnx 求证:当x1时,恒有xlnx2alnx1 2、已知定义在正实数集上的函数 f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22求证:f(x)g(x) 3、已知函数f(x)ln(1x) xb,求证:对任意的正数a、b,恒有lnalnb1.1xa4、f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有() (A)af(b)≤bf(a)(C)af(a)≤f(b) (B)bf(a)≤af(b)(D)bf(b)≤f(a)第三篇:导数证明不等式构造函数法类别(教师版)
第四篇:构造函数解导数
第五篇:导数证明不等式构造函数法类别(学生版)