第一篇:导数总结归纳大全
志不立,天下无可成之事!
类型二:求单调区间、极值、最值
例
三、设x3是函数f(x)(xaxb)e
(1)求a与b的关系式(用a表示b)
(2)求f(x)的单调区间
(3)设a0,求f(x)在区间0,4上的值域
23x的一个极值点
类型三:导数与方程、不等式
例
四、设函数f(x)(1x)2ln(1x)
(1)若在定义域内存在x0,使得不等式f(x0)m0成立,求实数m的最小值
(2)若函数g(x)f(x)xxa在区间0,2上恰有两个不同的零点,求实数a22的取值范围
第二篇:高中导数知识点总结
世界一流潜能大师博恩?崔西说:“潜意识的力量比表意识大三万倍”。追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。那么接下来给大家分享一些关于高中导数知识点总结,希望对大家有所帮助。
高中导数知识点11、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0
高中导数知识点2
一、求导数的方法
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即
二、关于极限
.1.数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:
2函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数.2、在的导数.3.函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A-1B-2C1D
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=;
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。
高中数学函数与导数知识点总结分享:
函数与导数
第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。
第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<>
第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。
第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。
高中数学的学习方法
首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。
第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。
第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。
第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔
高中导数知识点总结
第三篇:导数及其应用 知识点总结
导数及其应用 知识点总结
1、函数fx从x1到x2的平均变化率:
f
x2fx1
x2x1
xx0
f(x0x)f(x0)
x2、导数定义:fx在点x0处的导数记作y
f(x0)lim
;.
处的切线的斜率.
x03、函数yfx在点x0处的导数的几何意义是曲线
4、常见函数的导数公式:
yfx
在点
x0,fx0
①C'0;②(xn)'nxn1;③(sinx)'cosx;④(cosx)'sinx; ⑤(ax)'axlna;⑥(ex)'ex;⑦(log5、导数运算法则:
a
x)
'
1xlna
;⑧(lnx)'
1x
1
fxgxfxgx;
fxgxfxgxfxgx;
2
fxfxgxfxgx
gx02
gx3gx.
6、在某个区间a,b内,若fx0,则函数yfx在这个区间内单调递增;
若fx0,则函数yfx在这个区间内单调递减.
7、求解函数yf(x)单调区间的步骤:
(1)确定函数yf(x)的定义域;(2)求导数y'f'(x);(3)解不等式f'(x)0,解集在定义域内的部分为增区间;(4)解不等式f(x)0,解集在定义域内的部分为减区间.
8、求函数yfx的极值的方法是:解方程fx0.当fx00时:
'
1如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值; fx0,右侧fx0,那么fx0是极小值.
2如果在x0附近的左侧
9、求解函数极值的一般步骤:
(1)确定函数的定义域(2)求函数的导数f’(x)(3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况
10、求函数yfx在a,b上的最大值与最小值的步骤是:
1求函数yfx在a,b内的极值;
2将函数yfx的各极值与端点处的函数值fa,fb比较,其中最大的一个是最大值,最
小的一个是最小值.
第四篇:导数及其应用_知识点总结
导数及其应用 知识点总结
1、函数{ EMBED Equation.DSMT4 |fx从到的平均变化率:
2、导数定义:在点处的导数记作;.
3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.
4、常见函数的导数公式:
①;②;③;④;
⑤;⑥;⑦;⑧
5、导数运算法则:;
;
.
6、在某个区间内,若,则函数在这个区间内单调递增;
若,则函数在这个区间内单调递减.
7、求解函数单调区间的步骤:
(1)确定函数的定义域;(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
8、求函数的极值的方法是:解方程.当时:
如果在附近的左侧,右侧,那么是极大值;
如果在附近的左侧,右侧,那么是极小值.
9、求解函数极值的一般步骤:
(1)确定函数的定义域(2)求函数的导数f’(x)
(3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格
(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况
10、求函数在上的最大值与最小值的步骤是:
求函数在内的极值;
将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.
第五篇:导数与积分总结
导数与积分
1.导数的概念
函数y=f(x),如果自变量x在x0处有增量x,那么函数y相应地有增量
y=f(x0+x)-f(x0),比y值xy叫做函数y=f(x)在x0到x0+x之间的平均变化率,即x=
f(x0x)f(x0)x。如果当yx0时,x有极限,我们就说函数y=f(x)在点x0处可导,并把这个极限叫做f(x)在点x0处的导数,记作f’(x0)或y’|xx0。
f(x0x)f(x0)ylimlimxx0xx00即f(x)==2.导数的几何意义。
函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点p(x0,f(x0))处的切线的斜率。也就是说,曲线y=f(x)在点p(x0,f(x0))处的切线的斜率是f’(x0)。相应地,切线方程为y-y0=f`(x0)(x-x0)。
3.几种常见函数的导数:
xnnxn1;(sinx)cosx0;C(cosx)sinx;①②③;
④xxxx(e)e;(a)alna;
⑦⑤⑥
lnx11logaxlogaex;
⑧x.4.两个函数的和、差、积的求导法则
uu'vuv'''''''uv)uv.(uv)uvuv.v‘=v2((v0)。
复合函数的导数:
单调区间:一般地,设函数
yf(x)在某个区间可导,如果f'(x)0,则f(x)为增函数;如果f'(x)0,则f(x)为减函数;
f'(x)0,则f(x)为常数; 如果在某区间内恒有2.极点与极值:
曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:
一般地,在区间[a,b]上连续的函数f①求函数ƒ②求函数ƒ
(x)在[a,b]上必有最大值与最小值。
(x)在(a,b)内的极值;(x)在区间端点的值ƒ(a)、ƒ(b);
(x)的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。③将函数ƒ 4.定积分
(1)概念:设函数f(x)在区间[a,b]上连续,用分点a=x0 n间长度),把n→∞即△x→0时,和式In的极限叫做函数f(x)在区间[a,b]上的定积分,记作: baf(x)dx,即baff(x)dxlimn=i1n(ξi)△x。 这里,a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。基本的积分公式: 1m1x0dx=C;xdx=m1+C(m∈Q,m≠-1) ; m1xdx=lnxxaexdxexaxdx+C;=+C;=lna+C; cosxdx=sinx+C;sinxdx=-cosx+C(表中C均为常数)。 (2)定积分的性质 ①babkf(x)dxkf(x)dxabab(k为常数); ba②③abf(x)g(x)dxf(x)dxg(x)dxf(x)dxf(x)dxf(x)dxaccb; a(其中a<c<b。)(3)定积分求曲边梯形面积 由三条直线x=a,x=b(a baf1(x)dxf2(x)dxab。