第一篇:高中数学知识点公式定理记忆口决
高中数学知识点公式定理记忆口决
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
第二篇:高中数学常用公式定理汇总
2011年高考数学资料整理
高中数学常用公式定理汇总
集合类:
ABAABABBAB
逻辑关系类:
对数类:
logaM+logaN=logaMNlogMaM-logaN=logaN
logaMN=NlogaM logab
MN
=
Nb
logaMloga1=0
logaa=1loga1=-1a
loga^b
a
=b
logaa^b=blogab=alogba=1a
三角函数类:
sin,一二正
co,s一四正tan,一三正
sinsin
coscos
tantan
sin
2
cos
2
1sin2
cossin
cos2
cos
sin
cos2
2
sin
1
asinA
bsinB
csinC
2R
abcsinAsinBsinC
a*ba*b*cosa*b
cos
a*b
xx
yy
a
b
c
2bccosA
cosA
2bc
xx
221
*
yy
x
y
x
y
流程图类:
Int2.52.52(取不大于2.5的最大整数)mod10,31
平面几何类:
(取10除以3的余数)
圆标方程xa圆心:a,b
yb
r
函数类:
斜率:k
yx
y(xx
圆一般方程x
y
DxEyF0
x)
D
E
4F0
点斜式:yy
y
kx
x
x
y
两点式:
yy
xx
DE
圆心:,;半径:
22
4F
点点距离: PP
截距式:
xa
yb
1
0 ba
x2x1y2y1
一般式:AxByC韦达定理:x
x
1//2k1k2
点线距离:d
c
xx
a
A
x
B
y
C
A
B
A
x
B
yC10
与A2xB2yC20
平行:AB垂直:AA
AB BB
椭圆:ab
yb
1ab0
0
a
c
焦点:(c,0),(-c,0)
c
平行:A1xB1yC30 垂直:B1xA1yC30
平面向量类:
ab
a//b
离心率:e准线:x
a
c
双曲线:a
yb
1a,b0
b
c
a
xx,2
y
y
焦点:(c,0),(-c,0)离心率:e
a
c
xy
xy
0
准线:x渐近线:y
c
ba
x
抛物线:y
2px
(p>0)
p
焦点:F,0
2
x2x
2,11
2xx,x,x
1
离心率:eca
准线:xp2
数列类:
等差:ana1n1d
a
n
a
m
nmd
S
1
n
n
n2
n
a
nn12
d
mnpq
a
m
a
n
a
p
aq
等比:an1
na1q
a
n
a
nm
m
q
S
a11n
q
a1
anq
n
1q1q(q≠1)
mnpq
am
a
n
ap
aq
线性规划类:
n
nxn
niyixi
y
ii1bi1
i1*n2
nx2
nix
ii1i1
aybx
nxiyinxyx
i
xyiy
**bi1
n
n
x2
x2inx
i
x
i1
i1
aybx
导数类:
kxb,kC,(0C为常数)
x,1
ax,
a
x
lnaa0,且a1e
x,
ex
log
a
x
,1e
xloga
1xlna
a
0,且a1
lnx,sinx,x
cosx
cosx,sinx
fxgx,f,xg,x
Cfx,Cf,xC为常数
fxgx,f,xgxfxg,x
fx,f,xgxfxg,x
gx
g2
x
gx0 复数:
i
1
abicdiac,bd
abicdiacbdi abicdiacbdi abicdiac
bdbcadi
x2y
xyixyi
Zar,以a,0为圆心,r为半径的圆
Zabir,以a,b为圆心,r为半径的圆
1
3-2
2i
1
1i2
2i12
0
ax
bxc0,
b2
4ac0
x
b
4acb2
求根公式:
i
2a
向量与向量模关系:
Z1Z2Z1Z2Z1Z2
Z1,Z2是二次方程的根,那么即Z1abi,Z2abi
Z1,Z2共轭。
等式与不等式:
ababaabb
ac2
2a
b
aabb
b3b
a
24
abc2
3abc
ab2ab,ab2
ab,ab时取“”
ab2ab
abcabbcac
222
平面几何类:
内心:三条角平分线的交点
(到交边距离相等,为内切圆圆心)外心:三条中垂线的交点(外接圆的圆心)垂心:三条高线的交点 重心:三条中线的交点
S三角形
1
ppapbpc注:pabc
2
角平分线:中
AD
ABAC
BDDC
:
线
2AB
长
AC
BC
12
S扇形rr弧长
22
立体几何类:
S直棱柱侧ch
ch,V柱体V长方体abcSh
V球
R
S正棱锥侧S正棱台侧
1212,V椎体V台体
1313
Sh
SS,S球
4R
S,cch
hS
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3:经过不在同一条直线上的三点,有且只有一个平面。公理4:平行于同一条直线的两条直线互相平行。
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。
定理1:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
定理2:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线。
点、线、平面垂直:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直。
直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。
两个平面垂直的判定定理:如果一个平面经过;另一个平面的一条垂线,那么这两个平面相互垂直。
两个平面垂直的性质定理:如果两个平面相互垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
第三篇:高中数学三角函数公式定理口诀
高中数学三角函数公式定理口诀
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
山西铁路工程建设监理有限公司
刘荣申
第四篇:商品编码记忆口决
商品编码记忆口决(2015年)
自然世界动植矿,一二五类在取样;
三类四类口中物,矿产物料翻翻五;
化工原料挺复杂,打开六类仔细查;
塑料制品放第七,橡胶聚合脂烷烯;
八类生皮合成革,箱包容套皮毛造;
九类木秸草制品,框板柳条样样行;
十类木浆纤维素,报刊书籍纸品做;
十一税则是大类,纺织原料服装堆;
鞋帽伞属十二类,人发羽毛大半归;
水泥石料写十三,玻璃石棉云母粘;
贵金珠宝十四见,硬币珍珠同类现;
十五查找贱金属,金属陶瓷工具物;
电子设备不含表,机器电器十六找;
光学仪器十八类,手表乐器别忘了;
武器弹药特别类,单记十九少劳累;
杂项制品口袋相,家具文具灯具亮;
玩具游戏活动房,体育器械二十讲;
二十一类物品贵,艺术收藏古物类;
余下运输工具栏,放在十七谈一谈;
商品归类实在难,记住大类第一环。
商品大类归类:
动物植物制成油,1动2植3成油;
食物矿产化工六,4食5矿6化工;
塑胶皮具草木走,7塑8皮9草木;
纸浆纺织鞋帽伞,十纸1织鞋帽伞;
建筑珠宝贱金属,3建4宝5金属;
机器运输光学类,6器7输8光光;
武器杂项艺术藏,9武2杂二十一;
每句歌诀有三类,由此记住不会累。
商品编码口诀记忆法!
一类动物一到五,肉鱼虾蟹乳蛋蜜;二类六到十四章,菜果咖茶谷粉胶;
三类只有十五章,动植油脂食用油;四类十六到二四,糖食饮料酒醋烟; 五类二五到二七,非金金属矿油品;六类二八到三八,无机有机最复杂; 药肥油膏皂涤蜡,炸药燃料影相品;蛋白淀粉和胶酶,最后还有杂化品; 三九四零是七类,塑料橡胶及制品;四一四三生皮毛,鞍具旅行手提包; 九类四四到四六,木炭软木稻秸编;十类四七到四九,木浆纸张印刷品; 五零六三十一类,丝毛棉纤毡毯衣;**六七十二类,鞋帽伞杖鞭羽花; 六八六九七十章,石水云母陶玻璃;十四只有七十一,珍宝贵金首饰币; 七二八三十五类,钢铁铜镍铝铅锌;八四八五十六类,机械电气录声像; 八六八九十七类,机车车辆飞机船;九零九二十八类,光照影计检钟乐; 九十三章十九类,武器弹药及零件;九四九六二十类,家寝灯玩及杂项; 二十一类九七章,古物艺术收藏品,归类虽难但有方,细看多查熟生巧。
第五篇:高中数学知识点总结---二项式定理
高中数学知识点总结---二项式定理
0n01n1rnrrn0n1.⑴二项式定理:(ab)nCnabCnabCnabCnab.展开式具有以下特点:
① 项数:共有n1项;
012r,Cn,Cn,,Cn,,Cn② 系数:依次为组合数Cnn;
③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑵二项展开式的通项.(ab)n展开式中的第r1项为:Tr1Cnarnrrb(0rn,rZ).⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;
②二项展开式的中间项二项式系数最大......
nI.当n是偶数时,中间项是第1项,它的二项式系数C2n最大; 2
n1n1II.当n是奇数时,中间项为两项,即第项和第它们的二项式系数C1项,22n1n12C2nnn
最大.③系数和:
01nCnCnCnn2
02413CnCnCnCnCn2n1
附:一般来说(axby)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求...........
AkAk1,AkAk1或(Ak为Tk1的系数或系数AAAAk1k1kk解.当a1或b1时,一般采用解不等式组的绝对值)的办法来求解.⑷如何来求(abc)n展开式中含apbqcr的系数呢?其中p,q,rN,且pqrn把
r(abc)n[(ab)c]n视为二项式,先找出含有Cr的项Cn(ab)nrCr,另一方面在npqrqnrqqqpq(ab)nr中含有bq的项为CnrabCnrab,故在(abc)中含abc的项为
rqpqrrCnCnrabc.其系数为CnCnqr(nr)!n!n!pqrCnCnpCr.r!(nr)!q!(nrq)!r!q!p!