一元二次方程说课稿(样例5)

时间:2019-05-12 06:28:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元二次方程说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元二次方程说课稿》。

第一篇:一元二次方程说课稿

《一元二次方程》说课稿

实验中学:周春妮

今天我说的课题是《一元二次方程》,本节课我将从教材分析,学生分析,教法与学法分析,教学过程设计这四个方面进行陈述。

一、教材分析

(一)、教材的地位和作用

《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。同时为今后学习一元二次不等式及二次函数打下基础。

(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:

①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

(三)、教学重难点及关键 介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

二、学生分析

任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。这就要求我们教师必须从学生的认知结构和心理特征出发。九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。使得他们很快就能融入课堂,接受知识也事半功倍。当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。从而激发学生学习的兴趣,促进学生个性的形成和发展。要让学生成为课堂真正的主人,变厌学为乐学。

三、教法与学法分析

①教法分析:本节课坚持“以学生为主体,教师为主导”原则。为了使学生在知识上和能力上都有所提高,本节课我采用探究式教学法和合作交流法。首先是探究式教学法,根据学生的认知规律,对学生创设合适的学习情景,引导学生自主探索、积极参与课堂活动,其目的在于培养学生探索精神以及学生学习探究方法。其次是合作交流法,就是让学生共同讨论,有浅入深、有特殊到一般的提出问题,引导学生自主探索,合作交流,从而有效激发学生学习的积极性。②学法分析:在教师的组织引导下,采用自主探索,合作交流研讨式学习方法,让学生思考问题、获取知识、掌握方法,借此培养学生的动手、动脑、动口 1的能力,使学生真正的成为学习中的主体。

四、教学过程设计

为了体现在教学中循序渐进,讲练结合的特点,本节课安排了情景引入、新课学习、归纳小结、巩固练习、课堂小结、课后作业六个环节组成。

(一)、情景引入

给出3个数据x,6, 3,请同学们自己编一道方程,并求出这个方程的解。这个设计在于引导学生回忆复习已经学过的一元一次方程。通过自己编方程的形式引起学生们的注意,同时也激发了学生学习的兴趣。紧接着我又出示这样三个 数据:6, 3,x2,你还能编一个方程出来吗?因此在一个有趣的问题中引入本节课《一元二次方程》。从而激发学生的求知欲望,顺利地进入新课。

(二)、新课学习

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例:

一张矩形的铁片,长100厘米,宽50厘米。在他的四角各切去一个同样地正方形,然后将四角突起部分折起就能制作一个无盖的方盒。如果要制作的无盖方盒的底面积为3600平方厘米,那么铁片各角应切去多大的正方形?

应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课,同时突破难点之一的“由实际问题列出一元二次方程”。通过上述情景分析,让学生小组讨论,然后列出方程。

英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是就定义教定义。因此,我在课本的基础上,又补充第2个实例:

要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛。比赛组织者应邀请多少个队参加比赛?

这里我设计了三个问题帮助学生理解:

①全部比赛共有多少场?

②如果邀请x个队比赛,每个队都要与其它队共赛多少场?

③甲对与乙队,乙队与甲对的比赛是同一场比赛,所以全部比赛共有多少场呢?小组讨论,并列出方程。

《新教学理念》指出:教师要把课堂还给学生,让学生成为课堂上真正的主人。同时用提问的方式引导学生,也让学生更有兴趣的去分析和发现问题,从而解决问题。

(三)归纳小结

在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时 一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2。因为任何一个一元一次方程都可

2以化为 “ax+b=c(a≠0)”的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a≠0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念。

(四)巩固练习

为了使学生进一步明确一元二次方程的概念,我出示以下练习。

判断下列各式是否是一元二次方程:

① x+2x-y=3②mn+3=0

③a=4④2 x2 +2x+1=0

我让学生巩固练习,在巩固中提高。从学生心理条件来讲,喜欢参与一些有挑战性的活动,而老师又希望学生达到一定的熟练程度。因此通过这组练习加深学生对一元二次方程的理解和掌握。同时,对概念进行变式应用,可以开拓学生思维,培养学生的创新意识。

紧接着,我遵循巩固与发展想结合的原则,先引导学生学习课本例题,接着进行赏析。这个例题已经明确让我们“将方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数”。其实,即使课本没有这样指明,或者说,课本安排这道例题的用意,就是让学生养成将一元二次方程化为一般形式后再进行研究的良好习惯。因为,所谓的“二次项、一次项和常数项”都是在一元二次方程化为一般形式后的项。

接着,就是练习了。在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。

(五)课堂小结

最后我再引导学生做如下思考:(1)这节课你学会了什么数学知识?

(2)这节课你又学会了什么数学方法?

(3)通过这节课的学习,你觉得对你又有什么帮助呢?

一节有趣的数学课,就是要照顾到每一个层次的学生,让每一个人都有一种成就感。因此整个过程我让学生同桌之间进行,以培养学生的归纳、概括的能力。

(六)布置作业

考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做、思考题三类。以便同时兼顾到学有困难和学有余力的学生。

教学评价

现代数学教学观念要求学生从“学会”向“会学”转变。根据《新课程标准》的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。

板书设计

一元二次方程

①x2 一般形式:ax2+bx+c=0(a≠0)②x2 练习:

③x2 –x=56

一元二次方程

1、只含有一个未知数

2、未知数的最高次数为23、是整式

本节课我将以微笑、尊重、民主、合作、宽容、探究为学生营造一个良好的学习氛围,给更多的自主权学生,让学生上有个性的数学课,上充实的数学课是我努力的方向!

第二篇:一元二次方程复习课说课稿

《一元二次方程解法》说课稿

我县新一轮课改中,进一步优化、丰富了课型,使课堂教学向学生的自主学习型转化,使学生的主体地位得到进一步体现。特别是定向反思课,使得由教师为反思主体向学生为反思主体转变,进一步提高了学生的自主学习能力、合作学习能力,自主反思的意识。现就本节的定向反思课的设计加以说明:

学生在学习了一元二次方程的解法之后,均能顺利地解方程,但在学习和检测中发现学生因方法的不同影响解题效率,部分学生方法运用不灵活,急于解题而不注重分析和方法的选择,致使解题效率不高,因而设计本节的原理性反思结合疑难反思,达到收获知识、方法、思维的目的,以利于学生优化方法,提高应用与转化数学思想的能力,提高学习效率。而且尤其适合于我校“学习有组织,组织人人学,人人组织学”的教学理念,我们一直坚持的“学习组织”建设的优越性得到充分发挥,使反思得以轻松、高效进行。反思课的积极作用之一在于能有效进行学困生的转化,防止新的学困生的产生,进而提高学生的整体学习效果,使不同层次的学生得以均衡发展。

本节在设计上充分体现我县反思课型的操作要点:

活动一的目的是通过反思的主体----学生的不同层次的反思活动,即暴露存在的问题,使学生共同研析成因,通过交流分析,共同探索有效的解决途径,达到最大限度的资源共享。同时通过不同解法的比对、分析,使学生产生优化解决问题的方法和策略的意识,并进而形成规律性认识,升华方法,内化知识,形成体系,而且有利于培养学生的归纳能力,提高个性思维品质和数学素养。

活动二的目的在于通过规律的认识与提升后,运用解决问题的实践中,提高运用的熟练程度,达到消化、巩固、举一反

三、触类旁通的目的。并且通过进一步的反思,使学生掌握更准确,运用更灵活,使知识更深入系统化,提高全员的效果。

活动三的设计是在现有知识储备和能力水平的基础上,通过难度的一定程度的提高,训练学生的思维能力,培养学生的创新思维能力,勇于进取的学习品质,而且进一步培养学生对换元思想的认识和方程解法思想的认识。逐层深入的训练与反思,使学生对方法的认识更深入,提高反思效果,提升反思能力。

盘点收获这个环节是在本节内容反思的基础上进一步梳理、感悟与提升,不仅是知识层面的认识,更进一步的是数学思想、方法的提炼与升华,对学习方法的感悟,实现学习方式向思维方式的转变,优化学生的思维品质,促进知识的同化与迁移,增强创造性解决问题的能力,为学生的终身发展奠定基础。

第三篇:一元二次方程的应用教案及说课稿

《一元二次方程的应用——利润问题》教学设计

魏县车往中学

李海良

内容出处:人教课标版九年级数学上册第二十二章第三节。

一、教学目标:

a、知识与技能目标

(1)以一元二次方程解决的实际问题为载体,使学生初步掌握数学建模的基本方法。

(2)通过对一元二次方程应用问题的学习和研究,让学生体验数学建模的过程,从而学会利用一元二次方程来解决有关利润问题,并正确地用语言表述问题及其解决过程。b、过程与方法目标

通过自主探索、合作交流等活动,发展学生数学思维,培养学生合作学习意识,激发学生学习热情。C、情感态度与价值观目标

使学生认识到数学与生活紧密相连,数学活动充满着探索与创造,让他们在学习活动中培养合作协助精神,增强国情教育,从而使学生获得成功的体验,建立自信心,更加热爱数学、热爱生活。

二、教学重点:

培养学生运用一元二次方程分析和解决实际问题的能力,学习数学建模思想。

三、教学难点:

将同类题对比探究,培养学生分析、鉴别的能力。

四、教学内容:

问题1:如果每束玫瑰盈利10元,平均每天可售出40束.为扩大销售,经调查发现,若每束降价1元,则平均每天可多售出8束.如果小新家每天要盈利432元,那么每束玫瑰应降价多少元?

分析:本题是商品利润问题。解决这类问题必须明确几个关系:利润=(售价-进价)×销售数量;

点评:这是一个常规性的问题,只要结合生活常识稍加引导,学生不难找出等量关系,然后列方程解答。但是类似问题中,有时我们要对某些关键语句加以斟酌,或者讨论,才能得出结论。如:

问题2:情急之下,小新家准备零售这批玫瑰.如果每束玫瑰盈利10元,平均每天可售出40束.为扩大销售,经调查发现,若每束降价1元,则平均每天可多售出8束.如果小新家每天要盈利432元,同时也让顾客获得最大的实惠.那么每束玫瑰应降价多少元?

说明:此题上面我们已经做了解答,有些同学对答案也提出了质疑。这一点是我们数学学习应该具有的思维品质。也要求同学们在解题时,要认真审题,理解每一句话的涵义,在找出等量关系列方程后,要注意结果是否符合题意,对不符合题意的答案进行舍弃。在本题中,若单纯从盈利方面讲,两个答案都可取;若同时也让顾客获得最大的实惠。同学们就要展开讨论,对答案进行取舍。当然我们也可举些例子对比理解。

问题3:小新家的花圃用花盆培育玫瑰花苗.经过试验发现,每盆植入3株时,平均每株盈利3元;以同样的栽培条件,每盆每增加1株,平均每株盈利就减少0.5元.要使每盆的盈利达到10元,并尽量降低成本,则每盆应该植多少株?

问题4:某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件.如果每天盈利1600元,每应降价多少元?

问题5:某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元? 引导学生积极参与探究、分析对比得出:问题1、3、4两题的两个答案都满足题意。问题2、5两题为尽快减少库存,只选取降价多的那个答案。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案可能都满足题意(当然实际问题中不能取负)。

五、教学反思:

教学中存在很多是是而非的问题,这些问题的存在事实上更有学习的价值。我们可以作为一个案例单独进行分析、探究,引导学生怎样分析数学问题,怎样进行思考,让学生经历探索的过程,培养其良好的思维品质,提高其分析问题、解决问题的能力。

六、分层作业

1.必做题:作业本(复习题)

2.选做题:(学有余力的同学不妨探讨一下)一个容器装满40升纯酒精倒出一部分后用水注满,在倒出与第一次同量的混合液后用水加满,此时溶液内含纯酒精10升,求每次倒出的升数.《一元一次方程的应用----利润问题》说课稿

内容出处:人教课标版九年级数学上册第二十二章第三节。

在《一元二次方程》这一单元教学中,列方程解应用题是一个学习重点。其中利润问题也出现了多次,从近几年的中考题来看,也是考查的一个重点知识点。

一、教材分析:(说教材)1、教材所处的地位和作用:

一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位,其中一元二次方程的应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用。本节课是一元二次方程的应用,它是研究现实世界数量关系和变化规律的重要数学模型。从近几年的中考题来看,利润问题多次出现,是考查的一个重点知识点。

2、教学目标:

a、知识与技能目标

(1)以一元二次方程解决的实际问题为载体,使学生初步掌握数学建模的基本方法。(2)通过对一元二次方程应用问题的学习和研究,让学生体验数学建模的过程,从而学会利用一元二次方程来解决有关利润问题,并正确地用语言表述问题及其解决过程。b、过程与方法目标 通过自主探索、合作交流等活动,发展学生数学思维,培养学生合作学习意识,激发学生学习热情。

C、情感态度与价值观目标

使学生认识到数学与生活紧密相连,数学活动充满着探索与创造,让他们在学习活动中培养合作协助精神,增强国情教育,从而使学生获得成功的体验,建立自信心,更加热爱数学、热爱生活。、重点,难点以及确定的依据: 研究表明,学生解应用题最常见的困难是不会将实际问题提炼成数学问题。鉴于学生比较缺乏社会生活经历,搜集信息、处理信息的能力较弱,所以本节课的教学重点是学会用列方程的方法解决有关利用问题,培养学生运用一元二次方程分析和解决实际问题的能力,学习数学建模思想 ;教学难点是将同类题对比探究,培养学生分析、鉴别的能力。

二:学情分析:(说学法)

本案例对象是初三学生,他们具有一定的认知能力,但搜集处理信息的能力有限,鉴于此,本案例从具体的问题情境中抽象出数学问题,建立数学关系式,获得合理的解答,通过自主探索和合作交流这样有意义的探索过程,理解并掌握相应的数学知识与技能,产生积极的情感体验,进而创造性地解决问题。它具有明显的问题性、实践性、开放性和创造性等特点,能有效地发展学生的思维能力。三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作: 教法:创设情境——引导探究——类比归纳——鼓励创新.学法:自主探索——合作交流——反思归纳——乐于创新 教学的理论依据是:

1、必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。

2、在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后。

四、教学内容:

问题1:如果每束玫瑰盈利10元,平均每天可售出40束.为扩大销售,经调查发现,若每束降价1元,则平均每天可多售出8束.如果小新家每天要盈利432元,那么每束玫瑰应降价多少元?

分析:本题是商品利润问题。解决这类问题必须明确几个关系:利润=(售价-进价)×销售数量;

点评:这是一个常规性的问题,只要结合生活常识稍加引导,学生不难找出等量关系,然后列方程解答。但是类似问题中,有时我们要对某些关键语句加以斟酌,或者讨论,才能得出结论。如:

问题2:情急之下,小新家准备零售这批玫瑰.如果每束玫瑰盈利10元,平均每天可售出40束.为扩大销售,经调查发现,若每束降价1元,则平均每天可多售出8束.如果小新家每天要盈利432元,同时也让顾客获得最大的实惠.那么每束玫瑰应降价多少元?

说明:此题上面我们已经做了解答,有些同学对答案也提出了质疑。这一点是我们数学学习应该具有的思维品质。也要求同学们在解题时,要认真审题,理解每一句话的涵义,在找出等量关系列方程后,要注意结果是否符合题意,对不符合题意的答案进行舍弃。在本题中,若单纯从盈利方面讲,两个答案都可取;若同时也让顾客获得最大的实惠。同学们就要展开讨论,对答案进行取舍。当然我们也可举些例子对比理解。

问题3:小新家的花圃用花盆培育玫瑰花苗.经过试验发现,每盆植入3株时,平均每株盈利3元;以同样的栽培条件,每盆每增加1株,平均每株盈利就减少0.5元.要使每盆的盈利达到10元,并尽量降低成本,则每盆应该植多少株? 问题4:某种服装,平均每天可销售20件,每件盈利44元.若每件降价1元,则每天可多售5件.如果每天盈利1600元,每应降价多少元?

问题5:某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元? 引导学生积极参与探究、分析对比得出:问题1、3、4两题的两个答案都满足题意。问题2、5两题为尽快减少库存,只选取降价多的那个答案。学生进一步总结、归纳得出:若题中强调尽量减少库存或尽快减少库存,应只选取降价多的那个答案。若题中没有特殊要求,那么两个答案可能都满足题意(当然实际问题中不能取负)。

五、教学反思:

教学中存在很多是是而非的问题,这些问题的存在事实上更有学习的价值。我们可以作为一个案例单独进行分析、探究,引导学生怎样分析数学问题,怎样进行思考,让学生经历探索的过程,培养其良好的思维品质,提高其分析问题、解决问题的能力。

六、分层作业

1.必做题:作业本(复习题)

2.选做题:(学有余力的同学不妨探讨一下)一个容器装满40升纯酒精倒出一部分后用水注满,在倒出与第一次同量的混合液后用水加满,此时溶液内含纯酒精10升,求每次倒出的升数.

第四篇:一元二次方程实际问题

例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算销售量和月销售利润.

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.

(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?

分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.

(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]

(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40

•求月销售利润达到8000元,销售单价应为多少.

解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元

(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000

(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60

当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.

当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).

例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x

则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0

解得:x1=-2(不符,舍去),x2=

答:所求的年利率是12.5%.

1=0.125=12.5% 8

第五篇:一元二次方程应用2010

1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?

3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?

4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;

6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。

(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2

间包房租出,请分别写出y1、y2与x之间的函数关系式。

(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。

7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?

(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?

8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?

10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?

11.(2009年甘肃庆阳)若关于x的方程x2

2xk10的一个根是0,则k.

12.、(2009威海)若关于x的一元二次方程x2

(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.

下载一元二次方程说课稿(样例5)word格式文档
下载一元二次方程说课稿(样例5).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014最新人教版一元二次方程 简单

    《一元二次方程》单元训练题 班级:姓名: 一、选择题(每小题3分,共24分) 1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为 A. 1、2、-3B.1、2、-3C.1、-2、3D.1、2、3......

    一元二次方程专题复习

    一元二次方程专题复习类型之一 一元二次方程及其解的概念1 (2020·白银)已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值为(  )A.-1或2B.-1C.2D.0【变式训练】1.(2020·黑龙江......

    实际问题一元二次方程

    22.3《实际问题与一元二次方程》学案 课型:上课时间:课时: 学习目标: 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 学习过程:......

    一元二次方程专题练习

    22.2降次——解一元二次方程专题一利用配方法求字母的取值或者求代数式的极值1.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式,则k的值为A.-9或11B.-7或8C.-8或9C.-8或9222.如......

    《一元二次方程》参考教案

    21.1 一元二次方程教学内容 本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 知识技能 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际......

    九年级《实际问题与一元二次方程》说课稿(5篇范文)

    各位评委:大家好!今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比......

    一元二次方程与证明题

    一元二次方程与证明题班级姓名一.填空题1.一元二次方程x=16的解是2.若关于x的一元二次方程x2(k3)xk0的一个根是2,则另一个根是______.3.某种品牌的手机经过四、五月份连续两次降......

    关于一元二次方程教案大全(含5篇)

    关于一元二次方程教案大全一元二次方程是初中数学的主要内容,在初中代数中占重要地位。学生积极动手、动脑、动口为主线来完成。在教学中渗透类比化归等数学思想,让学生充分观......