高一数学的解题步骤(五篇)

时间:2020-12-23 10:41:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一数学的解题步骤》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学的解题步骤》。

第一篇:高一数学的解题步骤

数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。下面给大家分享一些关于高一数学的解题步骤,希望对大家有所帮助。

高一数学的解题步骤

1、首先是精选题目,做到少而精。

只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

2、其次是分析题目。

解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

3、最后,题目总结。

解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

学好高一数学的五步骤

一、读好课本,学会研究

有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,学生要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。

二、记好笔记,注重课堂

首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

再次,如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

三、做好作业,讲究规范

在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。抓数学学习习惯必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。

四、写好总结,把握规律

一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。

五、练好悟性,提升能力

学习要注重反思,练好悟性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。数学学科担负着培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。数学能力只有在数学思想方法不断地运用反思中才能培养和提高。数学内容的巨变和学习方法的落后,在学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题,解决问题的能力,这就是最好的悟性。

总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能达到事半功倍,进一步学好数学。

怎样才能学好高一数学

1、心理素质。由于学生在初中特定环境下所具有的荣誉感与成功感能否带到高中学习,这就要看他(或她)是否具备面对挫折、冷静分析问题、找出克服困难走出困境的办法。会学习的学生因学习得法而成绩好,成绩好又可以激发兴趣,增强信心,更加想学,知识与能力进一步发展形成了良性循环,不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会学习为会学习,经过一番努力还是可以赶上去的,如果任其发展,不思改进,不作努力,缺乏毅力与信心,成绩就会越来越差,能力越得不到发展,形成恶性循环。因此高中学习是对学生心理素质的考验。

2、学习方式、习惯的反思与认识

(1)学习的主动性。许多同学进入高中后还象初中那样有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动性,表现在不订计划,坐等上课,课前不作预习,对老师要上课的内容不了解,上课忙于记笔记,忽略了真正听课的任务,顾此失彼,被动学习。

(2)学习的条理性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

(3)忽视基础。有些“ 自我感觉良好”的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“ 水平”,好高骛远,重“量” 轻“ 质”,陷入题海,到正规作业或考试中不是演算出错就是中途“ 卡壳”。

(4)学生在练习、作业上的不良习惯。主要有对答案、不相信自己的结论,缺乏对问题解决的信心和决心;讨论问题不独立思考,养成一种依赖心理素质;慢腾腾作业,不讲速度,训练不出思维的敏捷性;心思不集中,作业、练习效率不高。

3、知识的衔接能力

初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。另一方面,高中数学与初中相比,知识的深度、广度和能力的要求都是一次质的飞跃,这就要求学生必须掌握基础知识与技能为进一步学习作好准备。由于初中教材知识起点低,对学生能力的要求亦低,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,有的内容为应付中考而不讲或讲得较浅(如二次函数及其应用),这部分内容不列入高中教材但需要经常提到或应用它来解决其它数学问题,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。如不采取补救措施,查缺补漏,学生的成绩的分化是不可避免的。这涉及到初高中知识、能力的衔接问题。

第二篇:高一数学解题习惯2020

要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。下面给大家分享一些关于高一数学解题习惯2020,希望对大家有所帮助。

#高一数学解题习惯#

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

#高一数学的提分技巧#

一、预习是聪明的选择

最好老师指定预习内容,每天不超过十分钟,预习的目的就是强制记忆基本概念。

二、基本概念是根本

基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,作题才能又快又准。

三、作业可巩固所学知识

作业一定要认真做,不要为节约时间省步骤,作业不要自检,全面暴露存在的问题是好事。

四、难题要独立完成想得高分一定要过难题关,难题的关键是学会三种语言的熟练转换。(文字语言、符号语言、图形语言)

五、加倍递减训练法

通过训练,从心理上、精力上、准确度上逐渐调整到考试的最佳状态,该训练一定要在专业人员指导下进行,否则达不到效果。

六、考前不要做新题

考前找到你近期做过的试卷,把错的题重做一遍,这才是有的放矢的复习方法。

七、良好心态

考生要自信,要有客观的考试目标。追求正常发挥,而不要期望自己超长表现,这样心态会放的很平和。沉着冷静的同时也要适度紧张,要使大脑处于最佳活跃状态

八、考试从审题开始

审题要避免“猜”、“漏”两种不良习惯,为此审题要从字到词再到句。

九、学会使用演算纸

要把演算纸看成是试卷的一部分,要工整有序,为了方便检查要写上题号。

十、正确对待难题

难题是用来拉开分数的,不管你水平高低,都应该学会绕开难题最后做,不要被难题搞乱思绪,只有这样才能保证无论什么考试,你都能排前几名。

#高一数学三大学习方法#

理解老师讲解的内容

学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

学会做题

要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。

整理资料

要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。


高一数学解题习惯2020

第三篇:高一数学解题思维和解题技巧

学好数学,无论是对高考,还是对以后学习工作都起着重要作用,与此同时也要注意一下数学思维,下面给大家分享一些关于高一数学解题思维和解题技巧,希望对大家有所帮助。

高一数学解题的思维过程

数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。

对于数学解题思维过程,G.波利亚提出了四个阶段-(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

第一阶段:理解问题是解题思维活动的开始。

第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

高一数学解题的技巧

为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

常用的途径有:

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

二、简单化策略

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件:

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

三、直观化策略:

所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

(一)、图表直观:

有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观:

有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观:

不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

四、特殊化策略

所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

五、一般化策略

所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

六、整体化策略

所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

七、间接化策略

所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题.高一数学解题要分析四个关系

一 审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a>0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

二“会做”与“得分”的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”。

三 快与准的关系

在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

四 难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

第四篇:数学:解题心得

数学:解题心得

探索法:即“尝试”,从简单到复杂,从特殊到一般。

① 代入特殊值 ②分析特殊情况(考虑极端)

注:任何难题,都不要寄希望于通过空想得出答案,而要代之以积极的探索,为“灵光一闪”做准备。

一、几何·解题·步骤(难度越大,效果越好)

1、画图:①准确画图 ②考虑全面(图形有几种情况)③大小适宜 ④信息归于图

2、观察、测量

① 观察:即用眼睛测量,得出量之间的关系的猜想。

猜想内容:边与边的数量、位置关系;角与角数量关系。

② 测量:进一步探索观察所得猜想。

3、倒推:将所证或测量所得猜想都化作已知,来推得结论与已知相衔接(即用“等效于”)。

4、最常用几何解法:勾股、方程、相似。

5、最常用几何辅助线:连线、垂线。

6、当遇到困难时:

①再仔细审题。

②分析哪些条件已充分利用,哪些还没有,再寻找突破点,不要发呆,积极探索。③有条理的使用草稿纸。

7、整体代入思想:当遇到复杂的数量关系时(如二次方程),可将所求用字母表示与其衔接。

三、思想

①三心合一:信心、细心、耐心。

②仔细审题,抓住每一个字符。

③锻炼思维能力和严谨细致才是数学学习的根本。

④可建立数学本,记录知识点、注意点、易错点。

⑤复习:1>错题、知识点回顾2>模拟卷训练。

四、考试策略(保持良好的身、心状态)

①选择题不能错,双倍专注“X”“√”“”。

②划记题干,慢、审题;一般不跳题。

③答案疑惑时,逐字审题,重新计算。

④似曾相识时,需特别谨慎,切忌想当然。

⑤理清思路再写,注意书写,注重过程规范。

⑥一定要检查!检查时换一种思维角度。

⑦注意单位。

第五篇:高一的数学学习三步骤

数学是一个人的学习生涯中所占比重最大的学科,也是高考科目中最能够拉开分数层次的学科,下面给大家分享一些关于高一的数学学习三步骤,希望对大家有所帮助。

高一的数学学习三步骤

抓住课堂,配合好教师的教学

应做到课前做好各种准备并利用课前两分钟的预习时间想一想前一节课的内容;上课时专心致志,积极思考,尽量使自己的思路与教师的思路过程合拍,做到耳目并用,手脑结合,提高听课的效率;课后及时复习,使知识再现,形成永久性记忆;最好能将数学老师所讲的内容与课本作一比较,从中获得更多知识;作业仅限于课堂练习是远远不够的,要利用课外资料拓宽知识领域,补充课内不足,更重要的是促进课内学习。

善于归纳总结知识间的联系

学习数学并非我做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,只要善于总结,就可以了解这一小节数学内容有哪几种题型,每种题目的一般解法和思路是什么,从而提高运用所学知识分析解题的能力。同时,每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能。

学会发现问题,并重视质疑在学习中常看到成绩好看同学,总是有很多问题问老师,而成绩差的同学却提不出什么问题。提出疑问不仅是发现真知的起点,而且是发明创造的开端。提高学习成绩的过程就是发现,提出并解决疑问的过程。大胆向老师质疑,不是笨的反映,而是在追求真知、积极进取的表现。在听课中,不但要“知其然”,还要“知其所以然”,这样疑问也就在不断产生,再加以分析思考使问题得以解决,学习也就得到了长进。

要重视自学能力的培养

学生在校学习时有着许多自习的时间,如能坚持自学,学起来就速度快、印象深、质量高。自学并不仅限于课内,还包括阅览数学课外书籍,使课内外知识互补。只有具有独立获取新知识的能力,才能不断更新自身的知识体系,跟上时代的节拍。

高一的数学学习六注意

1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。

2.要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

3.对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!

高一数学学习应注意什么

(1)注意和初中数学知识的衔接。这是一个十分困难的问题,初中数学与高中数学的差别非常大,从原本的实际思维转入抽象思维,需要一个大幅度转变。这就需要重新整理初中数学知识,形成良好的知识基础,在此基础上,再根据高中知识特点,较快的吸收新的知识,形成新的知识结构。

(2)认真理解,反复推敲思考高中各知识点的涵义,各种表示方法。容易混淆的知识,仔细辨识、区别,达到熟练掌握,逐步建立与高中数学结构相适应的理论本质与思考方法,切忌急于求成。

(3)通过学习,要努力培养自己观察,比较抽象,概括能力初步形成运用知识准确地表达数学问题和实际问题的意识和能力;培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观认识世界打下基础。

下载高一数学的解题步骤(五篇)word格式文档
下载高一数学的解题步骤(五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014中考物理力学大题解题步骤

    2014中考物理力学大题解题步骤 有关中考物理力学大题的解题步骤,一般可以分下面几步进行训练: 1)物理概念分析,也就是受力分析。在这个层面,只要能掌握基本的初中物理力学概念,在......

    二级ppt高级操作 - 解题步骤5篇

    《计算机应用基础》课程教学任务参考步骤 设计者:计算机基础教研室 一、P例4-01(乒乓球),完成以下操作: (1)幻灯片的设计模板设置为“暗香扑面” (2)给幻灯片插入日期(自动更新,格式......

    大学英语六级改错解题步骤及其口诀

    免费?宅在家学英语?怎么报名? 最牛英语口语培训模式:躺在家里练口语,全程外教一对一,三个月畅谈无阻! 洛基英语,免费体验全部在线一对一课程:www.xiexiebang.com/ielts/xd.html(报名网......

    解题的四步骤程式(含5篇)

    “解题的四步骤程式” (1)简单模仿 即模仿着教师或教科书的示范去解决一些识记性的问题.这是一个通过观察被模仿对象的行为,获得相应的表象,从而产生类似行为的过程,也是对解题基......

    初三数学解题思路

    三、名词解释 1. 2. 3. 4. 5. 土的可松性:自然状态下的土经开挖后,其体积因松散而增加,虽经回填压实,仍不能恢复到原来的体积,这种性质成为土地基处理:是指利用物理或化学的方法对......

    数学五步解题法

    数学五步解题法 数学科目是要让学生学会解题,所有的教学内容和教学效果的落脚点都是做题,要以能解决问题的形式体现出来。所以,用系统的方法教会学生解题是教学成绩提高的重中......

    数学证明题解题方法

    数学证明题解题方法第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是......

    一般数学解题方法

    初中数学解题方法之我见 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配......