线面垂直与面面垂直垂直练习题

时间:2019-05-12 17:22:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线面垂直与面面垂直垂直练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线面垂直与面面垂直垂直练习题》。

第一篇:线面垂直与面面垂直垂直练习题

2012级综合和高中练习题

2.3线面垂直和面面垂直

线面垂直专题练习

一、定理填空:

1.直线和平面垂直

如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理

线面垂直判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条垂直于一个平面,那么判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么.线面垂直性质定理:

垂直于同一个平面的两条直线互相平行.性质定理1:垂直于同一条直线的两个平面互相平行。

二、精选习题:

1.设M表示平面,a、b表示直线,给出下列四个命题:

①a//baMaMa//M②③b∥M④bMa//bb⊥M.abaMbMab

其中正确的命题是()

A.①②B.①②③C.②③④D.①②④

2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有()

第3题图

A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

3.设a、b是异面直线,下列命题正确的是()

A.过不在a、b上的一点P一定可以作一条直线和a、b都相交

B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直

C.过a一定可以作一个平面与b垂直

D.过a一定可以作一个平面与b平行

4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有()

A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

5.有三个命题:

①垂直于同一个平面的两条直线平行;

②过平面α的一条斜线l有且仅有一个平面与α垂直;

③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直

其中正确命题的个数为()A.0B.1C.2D.3 6.设l、m为直线,α为平面,且l⊥α,给出下列命题

① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题的序号是()...A.①②③B.①②④C.②③④D.①③④

7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;

8.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.

10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.12.已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.15.如图11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;

(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.求证:(1)AB⊥MN;(2)MN的长是定值.18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;

(2)求证:AC1∥平面CDB1.面面垂直专题练习

一、定理填空

面面垂直的判定定理:面面垂直的性质定理:

二、精选习题

1、正方形ABCD沿对角线AC折成直二面角后,AB与CD所成的角等于

2、三棱锥PABC的三条侧棱相等,则点P在平面ABC上的射影是△ABC的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________

4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________

5、已知l是直二面角,A,B,A、Bl,设直线AB与成30角,AB=2,B

到A在l上的射影N,则AB与所成角为______________.6、在直二面角AB棱AB上取一点P,过P分别在,平面内作与棱成 45°角的斜线PC、PD,则∠CPD的大小是_____________

7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.8.如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D

DA

1D

C1

C

A

B10、如图,三棱锥PABC中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC.

BAC11、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.

A

C

B

第二篇:线面垂直面面垂直专题练习

线面垂直专题练习

1.设M表示平面,a、b表示直线,给出下列四个命题:

aMa//baMa//M①②③b∥M④M.bMa//bb⊥abaMbMab

其中正确的命题是()

A.①②B.①②③C.②③④D.①②④

2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有()

第2题图

A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

3.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有()

A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

4有三个命题:

①垂直于同一个平面的两条直线平行;

②过平面α的一条斜线l有且仅有一个平面与α垂直;

③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直

其中正确命题的个数为()A.0B.1C.2D.35.设l、m为直线,α为平面,且l⊥α,给出下列命题

① 若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题的序号是()...

A.①②③B.①②④C.②③④D.①③④

6.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.7.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.8.如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D

DA

1D

A1C1C9、如图,三棱锥PABC中,PA⊥平面ABC,AC⊥BC,求证:平面PAC⊥平面PBC.

BA

C10、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问

△ABC是否为直角三角形,若是,请给出证明;若不是,请举

出反例.

BA C

第三篇:线面垂直练习题

例1如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.变式训练

已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥

AC.例2如图9,在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.变式训练

如图10,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.图10

例3如图11(1),在直四已知AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,A1BD,并说明理由.棱柱ABCD—A1B1C1D1中,DC=DD1=2AD=2AB,AD⊥DC,试确定E的位置,使D1E∥平面

变式训练

如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面

GBD.图121、如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点

.求证:

(1)AB⊥MN;(2)MN的长是定值.2、如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;

第四篇:线面垂直与面面垂直

线面垂直与面面垂直

一 复习上次课内容:

1.线面平行的判定与性质:

2.面面平行的判定与性质:

3.空间中的两直线垂直的判定:

二 梳理知识(新课内容)

1.线面垂直判定定理和性质定理

线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条于一个平面,那么判定定理2:一条直线垂直于两个平行平面中的一个平面,那么.性质定理3:如果两条直线同垂直于一个平面,那么这两条直线.2.面面垂直判定定理和性质定理

两平面垂直的判定定理:(线面垂直面面垂直)

如果,那么这两个平面互相垂直。推理模式:

两平面垂直的性质定理:(面面垂直线面垂直)

若两个平面互相垂直,那么在一个平面内垂直于它们的的直线垂直于另一个平面。

三 典型例题(有解析题目的详细过程)

1、已知:如图,P是棱形ABCD所在平面外一点,且PA=PC求证:AC平面PBD

D

C2、已知,如图,四面体A-BCD中,ABCD,ADBC,H为BCD的垂心。

求证:AH平面BCD

BCD3、如图,PA平面ABCD,ABCD是矩形,点M,N分别为AB,PC的中点,求证:MNAB4、如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上任一点,请写出图

中互相垂直的平面,并说明理由。

C

M

A

B5、已知:如图,将矩形ABCD沿对角线BD将BCD折

C

1起,使点C移到点C1,且

C1在平面ABD上的射影O恰好在AB上。(1)求证:ADBC1

(2)求证:面ADC1面BDC1.A

四 课堂练习

1、已知四面体ABCD中,ABAC,BDCD,平面ABC平面BCD,E为棱BC的中点。(1)求证:AE平面BCD;(2)求证:ADBC;

EA

C

D2、已知PA矩形ABCD所在的平面,M,N分别是AB,PC的中点。(1)求证:MNCD

(2)若PDA=45,求证:MN平面PCD.。

D3、一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.主视图

左视图

(1)求证:GNAC;

a

FE

(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.a

a

俯视图

A

G

D

M

B

C4、如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.

(1)求证:BE∥平面PDF;

(2)求证:平面PDF⊥平面PAB;

5、如图,在四棱锥P—ABCD中,AB∥CD,CD=2AB,AB平面PAD,E为PC的中点.(1)求证:BE∥平面PAD;

(2)若ADPB,求证:PA平面ABC D.

五 课堂小结

线线垂直线面垂直线线垂直

线线垂直线面垂直面面垂直线面垂直

第五篇:专题线面垂直

专题九: 线面垂直的证明

题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE

1题型二:线面垂直证明(利用线面垂直的判断定理)

例2:在正方体ABCDAO为底面ABCD的中心,E为CC1,1BC11D1中,平面BDE 求证:AO1

题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证ACBD

P N D C A M B 练:如图,PA平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MNAB

题型四:面面垂直的证明(本质上是证明线面垂直)

例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号

是.①平面PAB平面PBC ②平面PAB平面PAD ③平面PAB平面PCD

例5.如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

下载线面垂直与面面垂直垂直练习题word格式文档
下载线面垂直与面面垂直垂直练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线面垂直面面垂直及二面角专题练习

    线面垂直专题练习一、定理填空:1.直线和平面垂直如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理 线面垂直判定定理:如果一条直线和一个平面内的两条......

    线面、面面垂直性质测试题

    线面、面面垂直性质练习试题一、选择题1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()A.相等B.互补C.相等或互补D.无法确定2下列命题正确的是……......

    线面垂直、面面垂直同步练习

    1、若直线l上有两点P、Q到平面的距离相等,则直线l与平面的位置关系是A、平行B、相交C、平行或相交D、平行、相交或在平面内2、已知a,b,c是直线,,是平面,下列条件中,能得出直线a......

    专题二:立体几何---线面垂直、面面垂直汇总

    专题二:立体几何---线面垂直、面面垂直 一、知识点 (1)线面垂直性质定理(2)线面垂直判定定理(3)面面垂直性质定理(2)面面垂直判定定理 线面垂直的证明中的找线技巧 通过计算,运用勾股......

    线面垂直 ,面面垂直导学案

    1.2.3 空间中的垂直关系第1课时 线面垂直预习案主备人:史红荣【预习目标】1.掌握直线与平面垂直的定义2.掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直.【自主......

    第31课时线面垂直、面面垂直

    课题:线面垂直、面面垂直教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题. (一) 主要知识及主要方法:1.线面垂直的证明:1判定定理;2如果两条平行线中一条垂直于一......

    线面垂直与面面垂直知识点和专项练习

    知识改变命运,奋斗成就未来线面垂直与面面垂直1.直线和平面垂直如果一条直线和,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理线面垂直判定定理:判定定理1:如果两条......

    面面垂直习题(模版)

    例1如图,在四面体P-ABC中,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-AP-C的正切值。解:如图,过B作BE⊥AC于E,过E作EF⊥PA于F,连接BF∵PC⊥平面ABC,PC平面PACC ∴平面PAC⊥平面ABC ,∴BE......