第一篇:面面垂直习题(模版)
例1如图,在四面体P-ABC中,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-AP-C的正切值。
解:如图,过B作BE⊥AC于E,过E
作EF⊥PA于F,连接BF
∵PC⊥平面ABC,PC平面PAC
C ∴平面PAC⊥平面ABC ,∴BE⊥平面PAC
由三垂线定理,有BF⊥PA,∴∠BFE是二面角B-PA-C平面角,设PC=1,由E是AC的中点,BE
32,EF
12sin450B
24tgBFE
BE
EF6
例2:如图, PA⊥平面ABC,AC⊥BC,AF⊥PC于F.求证:
AF⊥平面PBC.证明:∵PA⊥平面ABCBC 平面ABC
∴ PA⊥BC
又AC⊥BC PA∩AC=A
∴ BC⊥平面PAC
平面PAC又BC P F A C B∴平面PBC⊥平面PAC
平面PAC,∵AF⊥PCAF
平面PBC∩平面PAC=PC
∴ AF⊥平面PBC
如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,求证:平面ADE⊥平面ACE.E
D
C
A
B
如图在空间四边形ABCS中,SA平面ABC,平面SAB 平面SBC
(1)求证:ABBC ;
(2)若设二面角SBCA为45,SA=BC,求二面角ASCB的大小
S
E
a
A 2aC
已知线段AB的两端点在直二面角CD的两个面内,且与、分别成30和45角,求AB和CD所成的角
C
如图PA垂直于矩形ABCD所在平面,E是AB的中点,二面角PCDB 为45求证:平面PEC平面PCD
G C
E B
第二篇:面面垂直性质定理及习题
面面垂直性质定理及习题《必修2》1.2.4一、学习目标撰稿:第四组审稿:高二数学组时间:2009-9-8
1. 理解面面垂直的性质定理
2. 会用性质定理解决有关问题
3. 线线、线面、面面之间的位置关系及相互转化
4. 利用面面位置关系解决有关问题
二、学习重点
面面垂直的性质定理及应用
学习难点
“线线、线面、面面”判定及性质定理的应用
三、知识链接
1. 面面垂直的判定定理
2. 面面平行的判定与性质定理
3. 直线与面平行、垂直的判定与性质定理
四、学习过程
1. 回顾上节内容,问:如果两个平面垂直,那么一个面内的直线是否一定垂直于另一个平面?
通过以上讨论,得平面与平面垂直的性质定理(1)符号语言:
(2)图形语言:
2. 如何对定理加以证明:
性质定理体现了什么关系?
它反映了面面垂直与线面垂直之间的密切关系,两者可以互相转化。
3. 对性质定理的应用
例:P4
4练习4
拓展:P43 例
3五、基础达标
1、判断下列命题是否正确,说明理由:
(1)若α⊥β,α⊥γ,则α∥β
(2)若α⊥β,β⊥γ,则α⊥γ
(3)若α∥α1,β∥β1,α⊥β,则α1⊥β1。
2、如图α,β,γ,为平面,α∩β=l,α∩γ=a, β∩γ=b,l⊥γ,指出图中哪个角是二面角
α-l-β的平面角,并说明理由。
3、判断下列说法是否正确:
(1)若平面α内的两条相交直线分别平面β 内的两条相交直线,则平面α平行与平面β;
(2)若两个平面分别经过两条平行直线,则这两个平面互相平行;
4、已知平面α、β直线l,且α∥β,l,且l∥α,求证:l∥β。
5、(1)已知平面外的一条直线上有两点到这个平面距离相等,试判断这条直线与该平面的位置关系;
(2)已知一个平面内有三点到另一平面距离相等,试判断这两个平面的位置关系。
6、如图,已知AB是平面α的垂线,AC是平面α的斜线,CDα,CD⊥AC。
求证:平面PAC⊥平面PBD.7、在四棱锥P—ABCD若PA⊥平面A BCD,且四边形ABCD是菱形。
求证:平面PAC⊥平面PBD.8、如图,已知正方体ABCD—A1B2C3D
4,求证:平面B1AC⊥平面B1BDD1.9、如图,在正方体ABCD-A1B1C1D1中,求二面角C1-BD-C的正切值。
10、已知平面α,β,γ,且α∥β,β∥γ,求证:α∥γ。
11、如图,在三棱柱ABC-A'B'C'中,点D,E分别是BC和 B'C'的中点。求证:平面A'EB
∥平面ADC'。
12、如图,有一块长方体的木料,经过木料表面A1B1C1D1内的一点P,在这个面内画线段,使其与木料表面ABCD内的线段EF平行,应该怎样画线?
今天我的收获
第三篇:如何证明面面垂直
如何证明面面垂直
设p是三角形ABC所在平面外的一点,p到A,B,C三点的距离相等,角BAC为直角,求证:平面pCB垂直平面ABC
过p作pQ⊥面ABC于Q,则Q为p在面ABC的投影,因为p到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的中心,因为角BAC为直,所以Q在线段BC上,所以在面pCB上有线段pQ⊥平面ABC,故平面pCB⊥平面ABC
2证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面
然后转化成一条直线垂直于另一个平面内的两条相交直线
也可以运用两个面的法向量互相垂直。
这是解析几何的方法。
2一、初中部分
1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。
2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法两条直线的方向向量数量积为0
2斜率两条直线斜率积为-1
3线面垂直,则这条直线垂直于该平面内的所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边
4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。
Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
第四篇:怎么证明面面垂直
怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成
一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法 两条直线的方向向量数量积为0 2斜率 两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
第五篇:面面垂直学案
§2.3.4平面与平面垂直的性质
一、学习目标:
1.掌握平面与平面垂直的性质定理的证明及应用;
2.掌握空间中的垂直关系相互转化的方法。
二、学习过程:
(一)复习引入
1.平面与平面垂直的定义:
2.面面垂直判定定理:
(二)探索研究
(1)观察黑板所在的平面和地面,它们是互相垂直的,那么黑板所在的平面里的任意一条直线是否就一定和地面垂直?
(2)观察长方体ABCD-A`B`C`D`中,平面AA`D`D与平面ABCD垂直,你能否在平面AA`D`D中找一条直线垂直于平面ABCD?
(三)严格证明
已知,CD,AB,ABCD于B.求证:AB.A
DB
(四)得出定理
面面垂直的性质定理:
两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言表述:
(五)知识应用举例
例
1、已知平面α与β互相垂直,判断下列命题是否正确:
(1)若b,则b。
(2)若=l,bl则b。
(3)若b,则b垂直于平面内的无数条直线。
(4)过一个平面内任意一点作交线的垂线,则此垂线
必垂直于另一个平面。
例
2、平面与平面互相垂直,m,P,Pm,判断:
(1)过点P且垂直于的直线a是否一定在内?
(2)过点P且垂直于的直线l与是什么位置关系?并证明
例
3、如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)求证:BC⊥平面PAC。(2)判断平面PBC与平面PAC是否垂直,并证明。
A
O B
练习:如图,AB是⊙O的直径,点C是圆上异于A,B的任意一点,PA⊥平面ABC,AF⊥PC于F.求证:AF⊥平面PBC.C
解题反思:
(六)小结反思
1.面面垂直的性质定理
2..空间垂直关系有那些?如何实现空间垂直关系的相互转化?请指出下图中空间垂直关系转化的定理依据?
①
②
③
④
(七)家庭作业《同步导学》