第一篇:面面垂直说课稿
两个平面垂直的判定与性质说课稿
教学目标:
⑴两个平面互相垂直的判定
⑵ 两个平面互相垂直的性质
⑶提高学生的空间想象能力,进一步提高学生分析问题、解决问题的能力。
重点、难点分析:
性质定理的引入及证明.
第一课时
教学目标:
⑴两个平面互相垂直的判定
⑵ 两个平面互相垂直的性质
教学重点:
两个平面垂直的判定与性质
教学难点:
⑴两个平面垂直的判定定理及其性质定理的运用。
⑵正确作出符合题意的空间图形
教学过程:
一.复习引入
⑴二面角、二面角的平面角。
⑵二面角的取值范围是(0,],即二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角。
⑶两个平面互相垂直是两个平面相交的特殊情形
二.讲授新课
1.概念
两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义。
如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直。
2.画法及记法
平面和垂直,记作⊥
3. 判定定理
以教室的门为例,由于门框木柱与地面垂直,那么经过木柱的门无论转到什么位置都有门面垂直于地面,所以猜想面面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(师生共同写出已知、求证、证明)
提问:建筑工人在砌墙时,常用一段系有铅垂的线来检查所砌强面是否和水平面垂直,依据是什么?
说明:⑴从转化的角度来看,两个平面垂直的判定定理可简述为:
线线垂直面面垂直
⑵为判定或作出线面垂直提供依据. 4.两个平面垂直的性质
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。从转化的角度来看,两个平面垂直的性质定理可简述为:面面垂直线面垂直
5.两个平面垂直的性质的另一个定理,也即课本的例2(P37).
如果两个平面互相垂直,那么经过第一个平面的一点垂直于第二个平面的直线,在第一个平面内.
三. 例题分析
例1:如图,四边形BCDE是正方形,AB⊥面BCDE,则图中所示7个平面中,有几对平面互相垂直?说出理由。
例2: 如图,是⊙、的直径,点 分别是
是⊙、上的动点,过动点的直线
垂直
于⊙ 所在平面,系?试说明理由.的中点,直线
与平面
有什么关
图
4解:由平面
垂直于⊙ .由
所在平面,知,即,故
是二面角
.因此,平面
.由两个平的平面角.由
是△
面垂直的性质定理,知直线
是直径上的圆周角,知 两边中点连线,知 与平面
垂直.
注意:本题也可以先推出 垂直于平面,再由,推出上面的结论.
四.巩固练习课后作业 五.小结
定义面面垂直是在建立在二面角的平面角的基础上的,理解面面垂直的判定与性质都要依赖面面垂直的定义.证明面面垂直要从寻找面的垂线入手,课本第37页上的例2也可以当作面面垂直的一条性质定理,在解题时注意应用.
第二课时 教学目标:
1.理解两个平面垂直的定义.
2.掌握面面垂直的判定定理与性质定理.
3.能应用面面垂直的判定与性质解决简单问题. 教学重点:
两个平面垂直的判定与性质
教学难点:
⑴两个平面垂直的判定定理及其性质定理的运用。⑵正确作出符合题意的空间图形 教学过程:
例
1:垂直于同一平面的两平面的交线垂直于这个平面. 已知:α⊥γ,β⊥γ,α∩β=a,求证:
a⊥γ.
师:本题条件是面面垂直,结论是线面垂直.选择适当的判定线面垂直的方法,给出证明. 证法一:设α∩γ=b,β∩γ=c,在γ内任取一点P,作PM⊥b于M,PN⊥C于N.因为α⊥γ,β⊥γ,所以PM⊥α,PN⊥β.因为α∩β=a,所以PM⊥a,PN⊥a,所以a⊥γ.
证法二:任取P∈a,过点P作b⊥γ.因为α⊥γ,所以b α,因为β⊥γ,因此b β,故α∩=b.由已知α∩β=a,所以a与b重合,所以a⊥γ.
证法三:设α⊥γ于b,β⊥β于C.在α内作b′⊥b,所以b′⊥γ.同理在β内作C′⊥C,有C′⊥γ,所以b′∥c′,又b′ β,c′ β,所以b′∥β.又b′ α,α∩β=a,所以b′∥a,故a⊥γ.
师:这道题的三种证法,从三个不同角度入手,解决了线面垂直的问题,证法一利用线线垂直得面面垂直的判定定理.证法二通过面面垂直的性质利用同一法.证法三则利用线线平行解决线面垂直问题. 例2:如图5,在空间边形
.求证:(1)
中,平面,平面,.,;(2)平面
例3.如图6,例4.如图7,二面角求证:平面[参考答案] 1.提示:由又2.提示:取,所以 中点 是△
所在平面外一点,平面 所在平面,.、分别是、的中点,,.求证:平面 垂直于矩形 为平面,面,连结 .
.,得,所以、.
面,从而面,得
面,得
面 .
.,3.提示:取,中点,面,连结,.、,证明: 面,,.,,面
例5:在平面四边形,沿
(1)求证:平面(2)求平面
中,已知 将四边形折成直二面角平面
;所成的角.
与平面
图
1解:如图1,其中(1)是平面四边形,(2)是折后的立体图.(1)证明:∵平面又∵∴,平面,.,交线为,∴
平面
作
内作是二面角∵点又∴
为
(2)过点
平面
.,为垂足,则
平面
.又过点
在平面
.由三垂线定理可知
.∴,为垂足,连结 的平面角.中点,∴,..
.
∴ .即平面 与平面 所成的二面角为 .
点评:折叠问题要特别重视线与线的位置关系,有的在折叠前后保持不变,关于它们的计算,可以在平面图形中求得,如本题中四条边的长也不变.所以,、后会发生变化,如 折叠后不再是,点已经变化了的量切不可用折叠前的数据进行计算.
和点
在折叠前后不变,四边形的均可在平面四边形中求得,但有些量折叠前
间的距离折叠后也变短了,
第二篇:面面垂直习题(模版)
例1如图,在四面体P-ABC中,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-AP-C的正切值。
解:如图,过B作BE⊥AC于E,过E
作EF⊥PA于F,连接BF
∵PC⊥平面ABC,PC平面PAC
C ∴平面PAC⊥平面ABC ,∴BE⊥平面PAC
由三垂线定理,有BF⊥PA,∴∠BFE是二面角B-PA-C平面角,设PC=1,由E是AC的中点,BE
32,EF
12sin450B
24tgBFE
BE
EF6
例2:如图, PA⊥平面ABC,AC⊥BC,AF⊥PC于F.求证:
AF⊥平面PBC.证明:∵PA⊥平面ABCBC 平面ABC
∴ PA⊥BC
又AC⊥BC PA∩AC=A
∴ BC⊥平面PAC
平面PAC又BC P F A C B∴平面PBC⊥平面PAC
平面PAC,∵AF⊥PCAF
平面PBC∩平面PAC=PC
∴ AF⊥平面PBC
如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,求证:平面ADE⊥平面ACE.E
D
C
A
B
如图在空间四边形ABCS中,SA平面ABC,平面SAB 平面SBC
(1)求证:ABBC ;
(2)若设二面角SBCA为45,SA=BC,求二面角ASCB的大小
S
E
a
A 2aC
已知线段AB的两端点在直二面角CD的两个面内,且与、分别成30和45角,求AB和CD所成的角
C
如图PA垂直于矩形ABCD所在平面,E是AB的中点,二面角PCDB 为45求证:平面PEC平面PCD
G C
E B
第三篇:如何证明面面垂直
如何证明面面垂直
设p是三角形ABC所在平面外的一点,p到A,B,C三点的距离相等,角BAC为直角,求证:平面pCB垂直平面ABC
过p作pQ⊥面ABC于Q,则Q为p在面ABC的投影,因为p到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的中心,因为角BAC为直,所以Q在线段BC上,所以在面pCB上有线段pQ⊥平面ABC,故平面pCB⊥平面ABC
2证明一个面上的一条线垂直另一个面;首先可以转化成一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面
然后转化成一条直线垂直于另一个平面内的两条相交直线
也可以运用两个面的法向量互相垂直。
这是解析几何的方法。
2一、初中部分
1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。
2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法两条直线的方向向量数量积为0
2斜率两条直线斜率积为-1
3线面垂直,则这条直线垂直于该平面内的所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边
4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。
Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
第四篇:怎么证明面面垂直
怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成
一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。这是解析几何的方法。
证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中两锐角互余证明
由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。2勾股定理逆定理
3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
二、高中部分
线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。
1向量法 两条直线的方向向量数量积为0 2斜率 两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线
一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):
Ⅰ.平行关系:
线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。
线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。
面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。Ⅱ.垂直关系:
线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。
线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。
面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。
第五篇:面面垂直学案
§2.3.4平面与平面垂直的性质
一、学习目标:
1.掌握平面与平面垂直的性质定理的证明及应用;
2.掌握空间中的垂直关系相互转化的方法。
二、学习过程:
(一)复习引入
1.平面与平面垂直的定义:
2.面面垂直判定定理:
(二)探索研究
(1)观察黑板所在的平面和地面,它们是互相垂直的,那么黑板所在的平面里的任意一条直线是否就一定和地面垂直?
(2)观察长方体ABCD-A`B`C`D`中,平面AA`D`D与平面ABCD垂直,你能否在平面AA`D`D中找一条直线垂直于平面ABCD?
(三)严格证明
已知,CD,AB,ABCD于B.求证:AB.A
DB
(四)得出定理
面面垂直的性质定理:
两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言表述:
(五)知识应用举例
例
1、已知平面α与β互相垂直,判断下列命题是否正确:
(1)若b,则b。
(2)若=l,bl则b。
(3)若b,则b垂直于平面内的无数条直线。
(4)过一个平面内任意一点作交线的垂线,则此垂线
必垂直于另一个平面。
例
2、平面与平面互相垂直,m,P,Pm,判断:
(1)过点P且垂直于的直线a是否一定在内?
(2)过点P且垂直于的直线l与是什么位置关系?并证明
例
3、如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)求证:BC⊥平面PAC。(2)判断平面PBC与平面PAC是否垂直,并证明。
A
O B
练习:如图,AB是⊙O的直径,点C是圆上异于A,B的任意一点,PA⊥平面ABC,AF⊥PC于F.求证:AF⊥平面PBC.C
解题反思:
(六)小结反思
1.面面垂直的性质定理
2..空间垂直关系有那些?如何实现空间垂直关系的相互转化?请指出下图中空间垂直关系转化的定理依据?
①
②
③
④
(七)家庭作业《同步导学》