第一篇:必修2-2.2线面平行面面平行的经典7道证明题
必修2 —2.2线面平行、面面平行的证明经典练习
1.直三棱柱ABCA1B1C1中,D是AB的中点,证明:BC1//平面ACD
2.如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点。求证:直线EF∥平面PCD;
A
3.4.PD⊥底面ABCD,PD=DC,EEDB;,D是AC的中点。
A
7.两个边长均为3的正方形ABCD和ABEF所在平面垂直相交于AB,MAC,NFB,且AMFN.(1)证明:MN//平面BCE;
第二篇:线面,面面平行证明题
线面,面面平行证明
一.线面平行的判定
1.定义:直线和平面没有公共点,则直线和平面平行.2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.3.符号表示为:a,b,a//ba//
二.面面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行符号语言:_____________________________________________________________________
选择题
1.已知直线l1、l2,平面α, l1∥l2, l1∥α, 那么l2与平面α的关系是().A.l1∥αB.l2αC.l2∥α或l2αD.l2与α相交
2.以下说法(其中a,b表示直线,表示平面)
①若a∥b,b,则a∥②若a∥,b∥,则a∥b
③若a∥b,b∥,则a∥④若a∥,b,则a∥b
其中正确说法的个数是().A.0个B.1个 C.2个D.3个
3.已知a,b是两条相交直线,a∥,则b与的位置关系是().A.b∥B.b与相交C.bαD.b∥或b与相交
4.如果平面外有两点A、B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是(A.平行B.相交C.平行或相交D.AB
5.如果点M是两条异面直线外的一点,则过点M且与a,b都平行的平面().A.只有一个 B.恰有两个 C.或没有,或只有一个 D.有无数个.已知两条相交直线a、b,a∥平面α,则b与平面α的位置关系()
A b∥αB b与α相交CbαDb∥α或b与α相交
7.不同直线m,n和不同平面,,给出下列命题:
//m//n
①mm//
n//
②m//
mm,n异面
③n
其中假命题有()
A0个B1个C2个D3个
8.若将直线、平面都看成点的集合,则直线l∥平面α可表示为()
AlαBlαCl≠αDl∩α=
9.平行于同一个平面的两条直线的位置关系是()
A平行B相交C异面D平行或相交或异面
10.下列命题中正确的是()
① 若一个平面内有两条直线都与另一个平面平行,则这两个平面平行
②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行
③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行
④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行
A.①③B.②④C.②③④D.③④.)
证明题:
1.如图,D-ABC是三棱锥,E,F,G,H分别是棱AB,BC,CD,AC的中点.求证:FGH.
2.平面与△ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面.3:在四面体ABCD中,M、N分别是面△ACD、△ABC的重心,在四面体的四个面中,与MN平行 的是哪几个面?试证明你的结论.平面D是直三棱柱ABC—A1B1C1的AB边上的中点,求证: AC1∥面B1CD。
C A1B
1B
5.在四棱锥S-ABCD中,底面ABCD为正方形,E、F分别是AB、SC的中点,求证: EF∥面SAD
E
B
C6、已知:△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,沿DE将△ADE折起,使A至A′的位置,取AB的中点为M,求证:ME∥平面ACD
7.在正方体ABCD—A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1。
8.如图2-3-7所示,正三棱柱ABC—A1B1C1中,D
是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论.9.正方体ABCD—A1B1C1D1中,E, F分别是AB,BC的中点,G为DD1上一点,且D1G:GD=1:2,ACBD=O,求证:平面AGO∥平面D1EF
AD
C
A B
10.在正方体ABCD-A1B1C1D1中,E、F、G、P、Q、R分别是所在棱AB、BC、BB、AD、DC、DD的中点,求证:平面PQR∥平面EFG。
C
E B
11.直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点:求证:平面AMC1//平面NB1C.12.如图,在三棱锥P-ABC中,D,E,F分别是棱PA,PB,PC的中点,求证:平面DEF∥平面ABC
B
第三篇:面面平行证明题
如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EABF∶FD,求证:EF//平面PBC.如图,空间四边形,平行于与的截面分别交、AC、CD、BD于E、F、G、H.
求证:四边形EGFH为平行四边形;
3如图,∥∥,直线a与b分别交,,于点A,B,C和点D,E,F,求证:
ABDE. BCEF第 7 页
4如图所示,在棱长为a的正方体ABCDA1B1C1D1中,Q分别是BC,C1D1,E,F,P,AD1,BD的中点.
(1)求证:PQ//平面DCC1D1.(2)求PQ的长.
(3)求证:EF//平面BB1D1D.如图,在正方体ABCDA1B1C1D1中,E,F,G,H分别棱是CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足
时,有MN//平面B1BDD1.如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM∶MBCN∶NBCP∶PD.
求证:(1)AC//平面MNP,BD//平面MNP;(2)平面MNP与平面ACD的交线//AC.
第 8 页
7如图,在正方体ABCDA1B1C1D1中,求证:平面A1BD//平面CD1B1.图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点. 求证:MN//平面PAD.
9如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD..如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.A
P
AE
C
B
第 9 页
第四篇:线面平行证明题
线面平行证明题
1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是().A.异面B.相交C.平行D.不能确定
2.若直线a、b均平行于平面α,则a与b的关系是().A.平行B.相交C.异面D.平行或相交或异面
3.已知l是过正方体ABCD—A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线,下列结论错误的是().A.D1B1∥lB.BD//平面AD1B
1C.l∥平面A1D1B1D.l⊥B1 C1
4.在下列条件中,可判断平面α与β平行的是().A.α、β都平行于直线l
B.α内存在不共线的三点到β的距离相等
C.l、m是α内两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β
5.下列说法正确的是().A.如果两个平面有三个公共点,那么它们重合B.过两条异面直线中的一条可以作无数个平面与另一条直线平行
C.在两个平行平面中,一个平面内的任何直线都与另一个平面平行
D.如果两个平面平行,那么分别在两个平面中的两条直线平行
6.下列说法正确的是().A.直线外一点有且只有一个平面与已知直线平行
B.经过两条平行线中一条有且只有一个平面与另一条直线平行
C.经过平面外一点有且只有一条直线与已知平面平行
D.经过平面外一点有且只有一个平面与已知平面平行
7.已知P是正方体ABCD-A1B1C1D1棱DD1上任意一点,则在正方体的12条棱中,与平面ABP平行的是.8.已知P是平行四边形ABCD所在平面外一点,E、F分别为
AB、PD的中点,求证:AF∥平面PEC
9.在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、C1D1的中点.求证:EF∥平面BB1D1D.DA
10.如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG.B
D11.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC(1)求证:MN//平面PAD;
(2)若E在PC上,CECP,过ADE做一平面与PB交与F点,是确定F点位置。
12.已知四棱锥P-ABCD中, 底面ABCD为平行四边形.点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD.求证:平面MNQ∥平面PBC.13.如图,在四棱锥P—ABCD中,底面ABCD是平行四边形,E为 侧棱PC上一点且PA//面BDE,求
14.在正方体AC1中,PEPC的值。
C
A
AEAA1
13,过ED1和B作出正方体的截面
A1
′
E
第五篇:线面、面面平行习题
线面、面面平行习题课
三、例题精讲
题型
1、线面平行判定定理,线面平行性质定理
线线平行 线面平行
例
1、(线线平行 →线面平行→线线平行)
解:已知直线a∥平面,直线a∥平面,平面平面=b,求证a//b.
证法一: 经过a作两个平面和,与平面和分别相交于直线c和d,aa//c c同理:a//da//
c//ddc//ccbc//ba//ba//c
证法二:经过a作一平面π,使得平面π∩面=k,面π∩面=l.aa// k k同理:a// la//
a// l// k
又∵三个平面α、、π两两相交,交线分别为k、l、b且k∥l,∴k∥l∥b,则a∥b.证法三:在b上任取一点A,过A和直线a作平面和平面α相交于l1,和平面相交于直线l2.aa// l1 l1同理:a// l2a//
a// l1// l
2∵过一点只能作一条直线与另一直线平行,∴l1与l2重合.又∵l1面α,l2面,∴l1与l2重合于b.∴a∥b.点拨:证明直线与直线平行,有下列方法:(1)若a,bα,且a∩b=,则a∥b;(2)若α∩β=a,β∩γ=b,γ∩α=c且a∥b∥c;(3)若a∥b,b∥c,则a∥c;(4)若a∥α;aβ,α∩β=b,则a∥b.C
1例
2、(线线平行→线面平行→线线平行→线面平行)证法一:连结AC、AC11,A
1长方体中A1A//C1CAC11//AC
AC面A1C1C
A1C1面A1C1
A BAC//面A1C1B
AC
面ACP
A1BPAM 面ACP面A1C1BMN
PCBCN1AC//MN
MN面ABCDMN//面ABCD
AC面ABCD
证法二:利用相似三角形对应边成比例及平行线分线段成比例的性质。∽PMPB
AA1M PBM MAAA1
∽ A1PNPB
PBNCCN 1
NCCC1
CC1AA1
PMPN
AC//MN
MANCMN//面
ABCDMN面ABCD
AC面ABCD
点拨:证明直线和平面平行的方法有:①利用定义采用反证法;②判定定理:利用线线平行,证线面平行;③利用面面平行,证线面平行.其中主要方法是②、③两法,在使用判定定理时关键是确定出面内的与面外直线平行的直线.例3.(线线平行→线面平行→面面平行)
证明:(1)分别连结B1D1、ED、FB,如答图9-3-3,C
1C
E、F分别是D1C1和B1C1的中点B1D1.2
正方体性质得B1D1//BD
EFBD.唯一平面,EF,BD
∴E、F、B、D共面.(2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO.M、N为A1B1、A1D1的中点MN//EF
EF面EFBDMN面EFBD.
MN面EFBD
O四边形PAOQ为平行四边形PA//OQ
OQ平面EFBDPA//面EFBD.
PA平面EFBD
PAMNP
PA、MN面AMN
平面AMN平面EFBD.例4.(线线平行→线面平行→面面平行→线面平行)证法一:作FH∥AD交AB于H,连结HE.
BC
ADBFBH
FH//ADBDBA
BF=B1E,BD=AB1
B1EBHEH//B1B
AB1BA
B1B平面BB1C1CEH//平面BB1C1C
EH平面BB1C1CEHFH=H
EH、FH平面FHE平面FHE//平面BB1C1C
EF//平面BB1C1C
EF平面FHEBC
1AD//BC
FH//BC
FH//AD
BC面BB1C1CFH//平面BB1C1C FH面BB1C1C
B1C1
D1
A1
证法二:(线线平行→线面平行)
A1
D1
连AF延长交BC于M,连结B1M.AD//BC
AFDF
AFD∽MFB
FMBF
BD=B1A
DF=AE
BE=BF1
AFAE
FMB1E
EF//B1M
B1M平面BB1C1CEF//平面BB1C1CEF平面BB1C1C
说明:证法一证线面平行,先证面面平行,然后说明直线在其中一个平面
内.证法二则是用了证线面平行,先证线线平行.例5.(面面平行→线线平行)
证明: 过A作直线AH//DF, 连结AD,GE,HF(如图).AH//m平面,AAH,mAD,GE,HF
lAHA平面',l,AH'GB,HC'
GE
AD,GE,HF
'GB,'HC
////
ABAGmlBG//CH ABDEBCGH BCEFAD//GE//HFAGDE、GHEF
例6.(线线平行→面面平行)证明:根据每相邻的两边互相垂直,边长均为a,A且AA1//CC1,将图形补成正方体,如图。则,B
C
只需在正方体中,证明面ABC//面A1B1C1即可。
A
1连接AC,AC11.正方体AB//B1C1且BC//A1B1
ABBCB,B1C1A1B1B1
AB,BC面ABC, A1B1,B1C面A1B1C面ABC//面A1B1C1
C1
B1
四、综合练习
1.证明:
证法一:(线线平行→线面平行(构造平行四边形))
如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN。
面ABCD面ABEFABAEDB
APDQ
PEQB
PMQN
AB//QN
ABDCPMPE
PM//AB
ABAE
//
PM QN四边形PMNQ为平行四边形PQ//MN
MN面BCEPQ//面BCEPQ面BCE
证法二:(线线平行→线面平行(构造三角形,利用平行线段比,三角形相似比))
如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.
面ABCD面ABEFABAEDB
APDQ
AQAPPQ//EKQKPE
EK面BCEPQ//面BCEPQ面BCE
AD//BC
证法三:(面面平行→线面平行)
如图(1),过PM∥BE交AB于M,连接MQ。
APAM
AEAB
面ABCD面ABEFABAEDBAPDQ
PM//BE
DQAQ
QBQK
A
M
F
P
B
D
Q
C
E
3
DQAM
MQ//ADDBABMQ//BC
AD//BC
PM//BEPMMQM,BEBCB
PM、MQ面PMQ,BE、BC面BCE
面PMQ
PM
2.证明:
GDGHGHEHA
HAC∥BD
ACBDBF
BFHB16
AEHA28
SAECSBFD
ACAEsinA
373
1744BFBDsinB2∴ SBFD96
3.证明:如答图9-3-2,连结AC交BD于点O.连结OQ
ABCD是平行四边形AOOC
PQ=PA
OQ是APC的中位线PC//OQ
PC面BDQ,OQ面BDQPC//平面BDQ.4.证明:连BF交CD于H,连PH
CFHF
AB//CDABF∽CFHFAFB
PECF
EBFA
PEHFEF//PH
EF// EBFB
EF面PCD,PH面PCD