第一篇:数学必修2第二章线面平行、面面平行的判定及性质练习
2.2线面平行、面面平行的判定
例题解析:
例1.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.例2.正方形ABCD交正方形ABEF于AB,M、N
求证:MN//平面BCE
例3.已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH、例4.如图,在空间四边形ABCD中,P、Q分别是△ABC和△BCD的重心.求证:PQ∥平面ACD.例5.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?
巩固练习:
1.若l//,A,则下列说法正确的是()
A.过A在平面内可作无数条直线与l平行B.过A在平面内仅可作一条直线与l平行 C.过A在平面内可作两条直线与l平行D.与A的位置有关
2.若直线a∥直线b,且a∥平面,则b与a的位置关系是()
A、一定平行B、不平行C、平行或相交D、平行或在平面内 3.如图在四面体中,若直线EF
和GH
相交,则它们的交点一定().A.在直线DB上B.在直线AB上
C.在直线CB上D.都不对
4.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线(A.异面B.相交C.平行D.不确定
5.已知平面、β和直线m,给出条件:①m∥;②m⊥;③m⊂;④⊥β;⑤∥β.为使m∥β,应选择下面四个选项中的()
A.①④B.①⑤C.②⑤D.③⑤ 6.若直线l与平面α的一条平行线平行,则l和的位置关系是()
A.lB.l//C.l或l//D.l和相交
7若直线a在平面内,直线a,b是异面直线,则直线b和平面的位置关系是()A.相交B.平行C.相交或平行D.相交且垂直
8.若直线l上有两点P、Q到平面的距离相等,则直线l与平面的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或在平面内 9.下列命题正确的个数是()
(1)若直线l上有无数个点不在α内,则l∥
(2)若直线l与平面α平行,l与平面内的任意一直线平行
(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面内一直线b平行,则a∥ A.0个B.1个C.2个D.3个
10.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N
是AB,PC的中点.求证:MN//平面PAD.
11.如图,S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的点,且求证:MN//平面SBC
12.如图A、B、C分别是△PBC、△PCA、△PAB的重心.求证:面ABC∥面ABC.AMSM=
BNND,13.如图,空间四边形ABCD的对棱AD、BC成60o的角,且ADBC2,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.(1)求证:四边形EGFH为平行四边形;
(2)E在AB的何处时截面EGFH
第二篇:线面平行面面平行性质学案
必修22.2.3—2.2.4直线与平面平行及平面与平面平行的性质多听、多思、多做,成功就在那里等你。
2.2.3-2.2.4直线与平面平行及平面与平面平行的性质
【学习目标】
1、探究直线与平面平行的性质定理;
2、体会直线与平面平行的性质定理的应用;
3、通过图形探究平面与平面平行的性质定理; 图形表示:
三、例题演示
4、熟练掌握平面与平面平行的性质定理的应用。
【学习重点】
1、直线与平面平行的性质定理.2、通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。
【学习难点】
1、直线与平面平行的性质定理的应用.2、平面和平面平行的性质定理的证明和应用。
一、旧知重现
1、直线与平面的位置关系:直线在平面外(直线与平面相交、直线与平面平行)、直线在平面内。
2、直线与平面平行的判定定理:平面_____一条直线与此平面______的一条直线______,则该直线与
此平面平行。可以用符号表示为:“_______________________________________________________”。
简记为“________________________________”.3、平面与平面平行的判定定理:一个平面内的_____条_________直线分别________于另一个平面,则
这两个平面平行。可以用符号表示为:“_____________________________________________________”。
简记为“________________________________”.二、新知探究
1、思考题:一条直线与一个平面平行,那么在什么条件下,平面内的直线与这条直线平行?
2、直线与平面平行的性质定理:______________________________________________________
_____________________________________________________
简证为:____________________________________________________
符号表示:____________________________________________________
图形表示:
3、思考题:当一个平面与另一个平面平行时,那么在什么条件下,一个平面内的直线与另一个平
面内的直线平行?
4、平面与平面平行的性质定理:______________________________________________________
_____________________________________________________
简证为:____________________________________________________
符号表示:____________________________________________________例
1、已知平面外的两条平行直线中的一条平行于这个平面。求证:另一条也平行于这个平面.例
2、求证:夹在两个平行平面间的平行线段相等.ADB
必修22.2.3—2.2.4直线与平面平行及平面与平面平行的性质多听、多思、多做,成功就在那里等你。
四、巩固训练
1、如图,E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于
2、已知AB、CD为异面线段,E、F分别为AC、BD中点,过E、F作平面α∥AB.(1)求证:CD∥α;F、G.求证:EH∥FG.2、求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.已知:如图,a∥α,a∥β,α∩β=b,求证:a∥b.3、判断下列结论是否成立:
① 过平面外一点,有且仅有一个平面与已知平面平行;()② 若∥,∥,则∥;()③平行于同一个平面的两条直线平行;()
④ 两个平面都与一条直线平行,则这两个平面平行;()
⑤ 一条直线与两个平行平面中的一个相交,则必与另一个相交。()
五、课后作业
1、如图,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH,AC∥面EFGH.(2)若AB=4,EF=,CD=2,求AB与CD所成角的大小.六、课后思考
1、直线与平面平行的性质与平面与平面平行的性质体现了什么数学思想?
2、上述两条性质有哪些方面的应用?
3、你能将线线平行、线面平行、面面平行三者之间的关系图示表示出来吗?
线线平行
线面平行面面平行
第三篇:线面平行、面面平行的判定作业
[平行]
“直线∥平面”的主要条件是“直线∥直线”,而“直线∥直线”一般是利用三角形的中位线平行于底边或平行四边形的对边平行来证明。
“平面∥平面”的主要条件是“直线∥平面”,可转化为“直线∥直线”来解决。
[注意]
书写的格式规范,3个条件(线面平行)或5个条件(面面平行)要写全。
例1.下列命题中正确的是()
① 若一个平面内有两条直线都与另一个平面平行,则这两个平面平行②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行 ③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行 ④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行
A.①③B.②④C.②③④D.③④
例2.已知m,n是两条直线, ,是两个平面,以下命题: ①m,n相交且都在平面,外,m∥,m∥, n∥,n∥,则∥;②若m∥, m∥,则∥;③m∥,n∥, m∥n, 则∥.其中正确命题的个数是()
A.0B.1C.2D.3练习2:设a,b是两条直线, ,是两个平面,则下面推理正确的个数为
(1)a,b,a∥, b∥,∥.(2)∥,a,b,a∥b
(3)a∥,l, a∥l
(4)a∥, a∥∥.例3:已知四棱锥P-ABCD中,地面ABCD为平行四边形,点M,N,Q分别为PA,BD,PD上的中点,求证:平面MNQ∥平面PBC
【练习
求证:
例4.分别为AB、PD的中点,求证:AF∥平面PEC
【练习4】:在正方体ABCD-A1B1C1D1中,E、F求证:EF∥平面BB1D1D
AC
ABC
D
练习5 正方体ABCD-A1B1C1D1,中,M,N,E,F分别为棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB
A1
C1
A
D
C
例5.如图,P是ABC所在平面外一点,A1,B1,C1 分别是PBC,PCA,PAB的重心, 求证:平面ABC∥:平面A1B1C1
第四篇:线面、面面平行关系的判定[范文]
课题:空间中直线与平面、平面与平面平行关系的判定
【课标展示】
1. 掌握直线与平面平行、平面与平面平行的证明方法。
2. 能规范、完整的书写证明过程。
3.经典呈现
(一)证明线面平行
1.如图,在直三棱柱ABC—A’B’C’中,点D是AB的中点.求证:AC’∥平面CDB’.归纳:利用________________证明两线平行
(二)证明面面平行
2.已知正方体ABCDA'B'C'D'中,E,F分别是AA',CC'的中点,求证:平面BDF∥平面B'D'E
第五篇:2.2.3+2.2.4线面和面面平行的性质
山东省新泰市第二中学高一数学组主编人:李健 吴师磊
2.2.3 直线与平面平行的性质
2.2.4平面与平面平行的性质
学习目标:
1、掌握直线与平面平行的性质定理;会用性质定理进行简单地证明;
2、掌握面面平行的性质定理及其应用;
3、体会面面平行的判定与性质的异同;
4、进一步提高空间想象能力,思维能力,进一步体会类比的作用,进一步渗透等价转化的而思想。
预习导引:
1、要点扫描:
1、线面平行的性质定理
(1)定理:一条直线与一个平面平行,则_______与该直线__________。
(2)符号形式:
(3)作用:线面平行可以推出________________。
2、面面平行的性质定理
(1)定理:如果两个平行平面同时和第三个平面__________,那么它们的___________。
(2)符号形式:
(3)作用:面面平行可以推出_________________。
2、预习自测:
1、下列说法错误的是()
A、平行于同一条直线的两个平面平行或相交
B、平行于同一个平面的两个平面平行
C、平行于同一条直线的两条直线平行
D、平行于同一个平面的两条直线平行或相交2、3个平面把空间分成6个部分,则()
A、三平面共线B、三平面两两相交
C、有两平面平行且都与第三平面相交D、A或者C3、下列命题中正确的个数是()
(1)若两个平面不相交,则它们平行;(2)若一个平面内有无数条直线都平行于另一个平面,则这两个平面平行;(3)空间两个相等的角所在的平面平行。
A、0个B、1个C、2个D、3个
4、a和b是异面直线,则经过b可作_______个平面与直线a平行。
5、异面直线a,b都和一个平面平行,且它们和该平面内的同一条直线的夹角分别是450和600,则a和b的夹角为____________________。
课堂导学:
探索新知:
探究
1、直线与平面平行的性质定理
问题1:如图,直线a与平面平行,请在图中的平面内画出一条和直线a平行的直线b。问题 2:我们知道两条平行线可以确定一个平面(为什么?),请在图中把直线 a, b 确定的平面画出来,并且表示为.问题 3:在你画出的图中,平面是经过直线 a, b 的平面,显然它和平面是相交的,并且直线b是这两个平面的交线,而直线a 和b又是平行的.因此,你能得到什么结
论?请把它用符号语言写在下面.问题 4:在下图中过直线a再画另外一个平面与平面相交,交线为c 直线a , c平行吗?和你上面得出的结论相符吗?你能不能从理论上加以证明呢
?
新知
1、直线与平面平行的性质定理
一条直线与一个平面平行,则过这条直线的任一平面与此平面的 交线都与该直线平行.反思:定理的实质是什么?
探究
2、平面与平面平行的性质定理
问题1:如图,平面与平面平行,a,请在图中的平面内画一条直线b与a平行。
问题2:在上图中,把平行直线a,b所确定的平面作出来,并且表示为。
问题3:在你所画的图中,平面和平面、是相交平面,直线a,b分别是平面和平面的交线,并且它们是平行的。根据以上的论述,你能得出什么结论?请把它用符号语言写在下面。
问题4:在下图中,任意再作一个平面与平面、都相交,得到的两条交线平行么?和你上面得出的结论相符么?你能从理论上证明么?
新知
2、两个平面平行的性质定理
如果两个平行平面同时与第三个平面相交,那么它们的交
线平行。
反思:定理的实质是什么?
典型例题:
例
1、如图所示的一块木料中,棱BC平行于面AC,⑴要经过面AC内的一点P和棱BC将木料锯开,应怎样画线?
⑵所画的线与平面AC是什么位置关系
? ‘’‘’
例
2、如图,已知直线a,b,平面,且a ∥b,a∥,a, b 都在平面外.求证:b ∥
a.小结:运用线面平行的性质定理证题,应把握以下三个条件(1)线面平行,即a//;(2)面面相交,即b;(3)线在面内,即b
试试:
求证:如果一条直线和两个相交平面平行,那么这条直线和它们的交线平行。
例
3、如图,//,AB//CD,且A,C,B,求证:AB=CD。
例4:已知平面//平面,AB、CD夹在,之间,AC,BD,E、F分别为AB、CD的中点,求证:EF//,EF//(提示:注意AB、CD的关系)。
小结:应用两个平面平行的性质定理关键要找到和这两个面相交的平面。
试试:
A,C,B,D,已知平面//平面,直线AB与CD交于点S,且AS=8,BS=9,CD=34,(1)当S在,之间时,CS长是多少?
(2)当S不,之间时,CS长又是多少?
错题集锦:
如图,在正方体ABCD-EFGH中,M,N分别是FC,BD的中点,求证:MN//平面BFEA。错证:在平面BB1A1A内找不到与直线MN平行的直线而
无法证明。
错因解析:错解不会在平面内寻找平面外直线的平行线。证
明线面平行时,需要在平面内找平面外直线的平行线,如果
该平行线不易找可借助于线面平行的性质定理,即过平面外的直线作为已知平面相交的平面,则该交线即为所找的平行
线,在找到该直线后可根据该直线的特点在叙述怎样作出该
直线。
总结提升:
学习小结:
1、直线和平面平行的性质定理运用;
2、体会线线平行与平面平行之间的关系;
3、平面与平面平行的性质定理及应用;
4、直线与直线、直线与平面、平面与平面平行的相互转换。
知识拓展:
1、在证明线线或线面平行的时候,直线和平面平行的判定定理和性质定理在解题时往往交替使用,相互转换,即线面平行问题往往转化为线线平行问题,线线平行问题又转化为线面平行问题,反复运用,直到得出结论。
2、两个平面平行,还有如下结论:
⑴如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面;
⑵夹在两个平行平面内的所有平行线段的长度都相等;
⑶如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.⑷如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交
.当堂检测
1、a,b,c表示直线,M表示平面,可以确定a//b的条件是()
A、a//M,bM B、a//c,c//b C、a//M,b//M D、a,b和c的夹角相等
2、平行四边形EFGH的四个顶点E、F、G、H分别在空间四边形ABCD的四条边AB、BC、CD、AD上,又EH//FG,则()
A、EH//BD,BD不平行于FGB、FG//BD,EH不平行于BD
C、EH//BD,FG//BDD、以上都不对
3、m,n是不重合的直线,,是不重合的平面:
(1)m,n//,则m//n;(2)m,m//,则//;
(3)n,m//n,则m//且m//;上面结论正确的有()
A、0个B、1个C、2个D、3个
4、AB和CD是夹在平行平面,间的两条异面线段,E、F分别是它们的中点,则EF和()A、平行 B、相交C、垂直D、不能确定
5、在由正方体棱的中点组成的直线中,和正方体的一个对角面平行的直线有____条。
6、若面//面,面//面,求证://.课后作业:
已知异面直线AB、CD都平行于平面,且AB、CD在的两侧,若AC、BD与平面相交于M、N两点,求证:
AMBN。MCND