§1.1.1-1.1.2《变化率与导数概念》导学案

时间:2019-05-12 17:13:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《§1.1.1-1.1.2《变化率与导数概念》导学案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《§1.1.1-1.1.2《变化率与导数概念》导学案》。

第一篇:§1.1.1-1.1.2《变化率与导数概念》导学案

sx-14-(2-2)-01

5§1.1.1-1.1.2《变化率与导数概念》导学案

编写:袁再华审核:沈瑞斌编写时间:2014.4.25

班级_____组名_______姓名_______

【学习目标】

1.通过实例,了解变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;

2.掌握平均变化率的概念及其计算步骤,体会逼近的思想方法;

3.在了解瞬时速度的基础上抽象出瞬时变化率,建立导数的概念,掌握用导数的定义求导数的一般方法.【学习重难点】

重点:导数的概念。难点:平均变化率、瞬时变化率的理解。

【知识链接】:

请阅读本章导言

【学习过程】:

一、知识点一.变化率

阅读教材 P2-3页内容,回答下列问题:

问题1:在气球膨胀率问题中,气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系

__________.如果将半径r表示为体积V的函数,那么___________.(1)当V从0增加到1时,气球半径r增加了___________.气球的平均膨胀率为___________.(2)当V从1增加到2时,气球半径增加了___________.气球的平均膨胀率为___________.由以上可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐.

思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

问题2:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系为h(t)=-4.9t+6.5t+10, 计算运动员在下列各时间段的平均速度v 2(1)在0t0.5这段时间里,=_______________________________

(2)在1t2这段时间里,v=__________________

二、知识点二.平均变化率概念

问题1:函数f(x)从x1到x2的平均变化率用式子表示为。问题2:设xx2x1,yf(x2)f(x1),这里x看作是对于x1的一个“增量”

可用

x1+x代替x2,同样yf(x2)f(x1)),则平均变化率为

问题3:观察课本P4图1.1-1函数f(x)的图象,平均变化率y___________.xyf(x2)f(x1)表示什么?____________________________.xx2x1

问题4:求函数平均变化率的一般步骤:

① 求自变量的增量Δx=;

② 求函数的增量Δy=;

③求平均变化率yx

2问题5:已知质点运动规律为st3,求时间在(3,3+t)中相应的平均速度

温馨提醒:①x是一个整体符号,而不是Δ与x相乘;②x2= x1+Δx,Δy=y2-y1;③Δx

可正可负

但不能为零。

思考:在高台跳水运动中,计算运动员在0t65这段时间里的平均速度,并思考以49

下问题: ⑴运动员在这段时间内是静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

三.知识点三.导数的概念

问题1:阅读教材P4-5内容.我们把物体在某一时刻的速度称为____________。一般地,若物体的运动规律为sf(t),则物体在时刻t的瞬时速度v 就是物体在t到tt这段时间内,当t_________时的平均速度,即vlims=___________________ t0t

问题2:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单

位:s)存在函数关系为ht4.9t6.5t10,运动员在t0=2的瞬时速度怎2

样表示?

问题3:函数y=f(x)在x=x0处的瞬时变化率表示为我们称它为函数yf(x)在xx0处的______,记作f'(x0)或________,即

温馨提示:

函数y=f(x)在x=x0处的导数即为函数y=f(x)在x=x0处的瞬时变化率,其定义的代数形式:f'(x0)=limf(x)f(x0)ylim;xx0xxx0xx0

2问题4:求函数y=2x在x=-1,x=-2时的导数,并说说你对所求结果的认识。

温馨提示:求函数yfx在xx0处的导数步骤:

(1)求增量yf(x0x)f(x0);

yf(x0x)f(x0);xyx

.x0时)x(2)算比值(3)求yxx0

问题5:阅读教材P6页例1,计算 21mv2。求物体开始运动后第5s时的动能。2

第二篇:导数的概念及其几何意义3导学案

导数的概念及其几何意义3导学案

本资料为woRD文档,请点击下载地址下载全文下载地址

三大段

一中心

五环节

高效课堂—导学案

制作人:张平安

修改人:

审核人:

班级:

姓名:

组名:

课题

第六课时

导数的几何意义

(二)学习

目标

掌握切线斜率由割线斜率的无限逼近而得,掌握切线斜率的求法

学习

重点

(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率.

学习

难点

(1)能体会曲线上一点附近的“局部以直代曲”的核心思想方法;(2)会求曲线上一点处的切线斜率.

学法

指导

探析归纳,讲练结合 学习

自主学习

.情境:设是曲线上的一点,将点附近的曲线放大、再放大,则点附近将逼近一条确定

的直线.

2.问题:怎样找到在曲线上的一点处最逼曲线的直线呢?

如上图直线为经过曲线上一点的两条直线.

(1)判断哪一条直线在点附近更加逼近曲线.

(2)在点附近能作出一条比更加逼近曲线

的直线吗?

(3)在点附近能作出一条比更加逼近曲线的直线吗?

3.归纳

(1).割线及其斜率:连结曲线上的两点的直线叫曲线的割线,设曲线上的一点,过点的一条割线交曲线于另一点,则割线的斜率为

(2).切线的定义:随着点沿着曲线向点运动,割线在点附近越来越逼近曲线。当点无限逼近点时,直线最终就成为在点处最逼近曲线的直线,这条直线也称为曲线在点处的切线;

(3).切线的斜率:当点沿着曲线向点运动,并无限靠近点时,割线逼近点处的切线,从而割线的斜率逼近切线的斜率,即当无限趋近于时,无限趋近于点处的切线的斜率.

师生互动

例1.已知曲线,(1)判断曲线在点处是否有切线,如果有,求切线的斜率,然后写出切线的方程.

(2)求曲线在处的切线斜率。

分析:(1)若是曲线上点附近的一点,当沿着曲线无限接近点时,割线的斜率是否无限接近于一个常数.若有,则这个常数是曲线在点处的切线的斜率;(2)为求得过点的切线斜率,我们从经过点的任意一点直线(割线)入手。

例2.已知,求曲线在处的切线的斜率.

分析:为了求过点的切线的斜率,要从经过点的任意一条割线入手.

例3.已知曲线方程,求曲线在处的切线方程.

三、自我检测

练习第1,2,3题;

习题2-2A组中第3题

四、课堂反思、这节课我们学到哪些知识?学到什么新的方法?

2、你觉得哪些知识,哪些知识

还需要课后继续加深理解?

五、拓展提高、补充:判断曲线在点处是否有切线?如果有,求出切线的方程.

2、习题2-2中B组1、2

第三篇:1.1变化率与导数 教学设计 教案

教学准备

1.教学目标

(1)理解平均变化率的概念.(2)了解瞬时速度、瞬时变化率、的概念.(3)理解导数的概念

(4)会求函数在某点的导数或瞬时变化率.2.教学重点/难点

教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解 教学难点:会求简单函数y=f(x)在x=x0处的导数

3.教学用具

多媒体、板书

4.标签

教学过程

一、创设情景、引入课题

【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。

【板演/PPT】

【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系

h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 【板演/PPT】 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

【设计意图】自然进入课题内容。

二、新知探究 [1]变化率问题 【合作探究】 探究1 气球膨胀率

【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是如果将半径r表示为体积V的函数,那么

【板演/PPT】 【活动】 【分析】

当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为0.62>0.16 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 解析:探究2 高台跳水

【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?(请计算)

【板演/PPT】 【生】学生举手回答

【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。【师】解析:h(t)=-4.9t2+6.5t+10

【设计意图】两个问题由易到难,让学生一步一个台阶。为引入变化率的概念以及加深对变化率概念的理解服务。

探究3 计算运动员在这段时间里的平均速度,并思考下面的问题:(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗? 【板演/PPT】 【生】学生举手回答

【师】在高台跳水运动中,平均速度不能准确反映他在这段时间里运动状态.【活动】师生共同归纳出结论平均变化率: 上述两个问题中的函数关系用y=f(x)表示,那么问题中的变化率可用式子

我们把这个式子称为函数y=f(x)从x1到x2的平均变化率.习惯上用Δx=x2-x1,Δy=f(x2)-f(x1)这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2 同样Δy=f(x2)-f(x1),于是,平均变化率可以表示为:

【几何意义】观察函数f(x)的图象,平均变化率意义是什么? 的几何

【提示】:直线AB的斜率 【生】学生结合图象思考问题 【设计意图】问题的目的是: ① 让学生加深对平均变化率的理解; ② 为下节课学习导数的几何意义作辅垫; ③ ③培养学生数形结合的能力。[2]导数的概念 探究1 何为瞬时速度 【板演/PPT】

在高台跳水运动中,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度.平均变化率近似地刻画了曲线在某一区间上的变化趋势.【师】如何精确地刻画曲线在一点处的变化趋势呢?

求:从2s到(2+△t)s这段时间内平均速度 解:

探究2 当Δt趋近于0时,平均速度有什么变化趋势?

从2s到(2+△t)s这段时间内平均速度

当△ t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的一边趋近于2时,平均速度都趋近与一个确定的值 –13.1.从物理的角度看, 时间间隔 |△t |无限变小时,平均速度就无限趋近于 t = 2时的瞬时速度.因此, 运动员在 t = 2 时的瞬时速度是 –13.1 m/s.为了表述方便,我们用

表示“当t =2, △t趋近于0时,平均速度 趋近于确定值– 13.1”.【瞬时速度】

我们用

表示 “当t=2, Δt趋近于0时,平均速度趋于确定值-13.1”.局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。那么,运动员在某一时刻 的瞬时速度?

【设计意图】让学生体会由平均速度到瞬时速度的逼近思想:△t越小,V越接近于t=2秒时的瞬时速度。

探究3:

(1).运动员在某一时刻 t0 的瞬时速度怎样表示?(2).函数f(x)在 x = x0处的瞬时变化率怎样表示?

导数的概念:

一般地,函数 y = f(x)在 x = x0 处的瞬时变化率是

称为函数 y = f(x)在 x = x0 处的导数, 记作

或,【总结提升】

由导数的定义可知, 求函数 y = f(x)的导数的一般方法: [3]例题讲解

例题1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热.如果第 x h时, 原油的温度(单位:)为 y=f(x)= x2–7x+15(0≤x≤8).计算第2h与第6h时, 原油温度的瞬时变化率, 并说明它们的意义.解: 在第2h和第6h时, 原油温度的瞬时变化率就是

在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5.它说明在第2h附近, 原油温度大约以3 /h的速率下降;在第6h附近,原油温度大约以5 /h的速率上升.[4]本节课知识总结 1.函数的平均变化率

2.求函数的平均变化率的步骤:(1)求函数的增量Δy=f(x2)-f(x1)(2)计算平均变化率

3、求物体运动的瞬时速度:(1)求位移增量Δs=s(t+Δt)-s(t)(2)求平均速度(3)求极限

4、由导数的定义可得求导数的一般步骤:(1)求函数的增量Δy=f(x0+Δt)-f(x0)(2))平均变化率(3)求极限

三、复习总结和作业布置 [1] 课堂练习

1.函数y=f(x)的自变量x由x0改变到x0+Δx时,函数值的改变量Δy为()A.f(x0+Δx)B.f(x0)+Δx C.f(x0)·Δx D.f(x0+Δx)-f(x0)2.若一质点按规律s=8+t2运动,则在时间段2~2.1中,平均速度是()A.4 B.4.1 C.0.41 D.-1.1 3.求y=x2在x=x0附近的平均速度。

4.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.课堂练习【参考答案】 1.D 解析:分别写出x=x0和x=x0+Δx对应的函数值f(x0)和f(x0+Δx),两式相减,就得到了函数值的改变量Δy=f(x0+Δx)-f(x0),故应选D.2.B 解析:3.解析:

4.解析:

课后习题

1、复习本节课所讲内容

2、预习下一节课内容

3、课本 P.10习题1.1 A组1,2,3,4.

第四篇:3.1 变化率与导数 教学设计 教案

教学准备

1.教学目标

知识与技能

1.理解平均变化率的概念.2.了解瞬时速度、瞬时变化率、的概念.3.理解导数的概念

4.会求函数在某点的导数或瞬时变化率.过程与方法

理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.

情感、态度与价值观

感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.

2.教学重点/难点

教学重点

平均变化率的概念. 教学难点

平均变化率概念的形成过程.

3.教学用具

多媒体、板书

4.标签

教学过程

教学过程设计

创设情景、引入课题

【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。

【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。新知探究 1.变化率问题 探究1 气球膨胀率

【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是

如果将半径r表示为体积V的函数,那么

【分析】

(1)当V从0增加到1时,气球半径增加了

气球的平均膨胀率为

(2)当V从1增加到2时,气球半径增加了

气球的平均膨胀率为 0.62>0.16,可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

解析:

探究2

高台跳水

【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?

【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。【师】解析:h(t)=-4.9t2+6.5t+10

探究3 计算运动员在这段时间里的平均速度,并思考下面的问题:

(1)运动员在这段时间里是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗? 【师】在高台跳水运动中,平均速度不能准确反映他在这段时间里运动状态.【活动】师生共同归纳出结论平均变化率: 上述两个问题中的函数关系用y=f(x)表示,那么问题中的变化率可用式子表示.我们把这个式子称为函数y=f(x)从x1到x2的平均变化率.习惯上用Δx=x2-x1,Δy=f(x2)-f(x1)这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2 同样Δy=f(x2)-f(x1),于是,平均变化率可以表示为:

【几何意义】观察函数f(x)的图象,平均变化率 的几何意义是什么?

【提示】:直线AB的斜率 【设计意图】问题的目的是:

让学生加深对平均变化率的理解; ②

为下节课学习导数的几何意义作辅垫; ③ 培养学生数形结合的能力。2.导数的概念

探究1 何为瞬时速度2.【板演/PPT】

在高台跳水运动中,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度.平均变化率近似地刻画了曲线在某一区间上的变化趋势.【师】如何精确地刻画曲线在一点处的变化趋势呢?

求:从2s到(2+△t)s这段时间内平均速度 解:

探究2 当Δt趋近于0时,平均速度有什么变化趋势? 从2s到(2+△t)s这段时间内平均速度

当△ t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的一边趋近于2时,平均速度都趋近与一个确定的值 –13.1.从物理的角度看, 时间间隔 |△t |无限变小时,平均速度就无限趋近于 t = 2时的瞬时速度.因此, 运动员在 t = 2 时的瞬时速度是 –13.1 m/s.为了表述方便,我们用

表示“当t =2, △t趋近于0时,平均速度趋近于确定值– 13.1”.【瞬时速度】 我们用

表示 “当t=2, Δt趋近于0时,平均速度趋于确定值-13.1”.局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。那么,运动员在某一时刻 的瞬时速度?

【设计意图】让学生体会由平均速度到瞬时速度的逼近思想:△t越小,V越接近于t=2秒时的瞬时速度。探究3:(1).运动员在某一时刻 t0 的瞬时速度怎样表示?(2).函数f(x)在 x = x0处的瞬时变化率怎样表示?

导数的概念: 一般地,函数 y = f(x)在 x = x0 处的瞬时变化率是

称为函数 y = f(x)在 x = x0 处的导数,记作

由导数的定义可知, 求函数 y = f(x)的导数的一般方法: 1.求函数的改变量2.求平均变化率

3.求值

【典例精讲】

例1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热.如果第 x h时, 原油的温度(单位:)为 y=f(x)= x2–7x+15(0≤x≤8).计算第2h与第6h时, 原油温度的瞬时变化率, 并说明它们的意义.解: 在第2h和第6h时, 原油温度的瞬时变化率就是

根据导数的定义,在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5.它说明在第2h附近, 原油温度大约以3/h的速率下降;在第6h附近,原油温度大约以5 /h的速率上升.例2.求函数处的导数.

【小结】

1.求导方法简记为:一差、二化、三趋近.

2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法. 【变式训练】

用定义求函数f(x)=x2在x=1处的导数.

【当堂训练】

1.函数y=f(x)的自变量x由x0改变到x0+Δx时,函数值的改变量Δy为()A.f(x0+Δx)

B.f(x0)+Δx C.f(x0)·Δx

D.f(x0+Δx)-f(x0)2.若一质点按规律s=8+t2运动,则在时间段2~2.1中,平均速度是()A.4

B.4.1 C.0.41

D.-1.1 3.求y=x2在x=x0附近的平均速度。

4.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.【参考答案】 1.D 解析:分别写出x=x0和x=x0+Δx对应的函数值f(x0)和f(x0+Δx),两式相减,就得到了函数值的改变量Δy=f(x0+Δx)-f(x0),故应选D.2.B

【作业布置】

1、复习本节课所讲内容

2、预习下一节课内容

3、课本 P.10习题1.1 A组1,2,3,4.课堂小结

1、函数的平均变化率

2、求函数的平均变化率的步骤:(1)求函数的增量Δy=f(x2)-f(x1)(2)计算平均变化率

3、求物体运动的瞬时速度:(1)求位移增量Δs=s(t+Δt)-s(t)(2)求平均速度

(3)求极限

4、由导数的定义可得求导数的一般步骤:(1)求函数的增量Δy=f(x0+Δt)-f(x0)(2)求平均变化率

(3)求极限

课后习题

课本 P10习题1.1 A组1,2,3,4.板书

第五篇:1.1变化率与导数 教学设计 教案

教学准备

1.教学目标

知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度掌握导数的定义.2.教学重点/难点

【教学重点】:

理解掌握物体的瞬时速度的意义和导数的定义.【教学难点】:

理解掌握物体的瞬时速度的意义和导数的定义.3.教学用具

多媒体

4.标签

变化率与导数

教学过程

课堂小结

课后习题

下载§1.1.1-1.1.2《变化率与导数概念》导学案word格式文档
下载§1.1.1-1.1.2《变化率与导数概念》导学案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2015高中数学选修2-2导学案:《变化的快慢与变化率》

    致远中学高二数学学案第1课时 变化的快慢与变化率 1.通过实例,明白变化率在实际生活中的应用,探究和体验平均变化率的实际意义和数学意义. 2.理解函数的平均变化率和瞬时变......

    高二数学导数与导函数的概念教案

    高二数学导数与导函数的概念教案 教学目标: 1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义; 2、过程与方......

    《2.4 导数的四则运算》导学案

    《2.4 导数的四则运算》导学案 课程学习目标 1.掌握导数的四则运算法则. 2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 课程导学建议 重点:利用基......

    社会生活的变化导学案

    潜山县卫民中学高效课堂自主学习型历史导学案___八年级___历史___ (科目)编号:__001____主备人:____储高明____指导教师:___________教研组长:___________教导处:__________课题:中......

    20.1一次函数的概念-导学案

    20.1一次函数的概念导学案 学习目标: 1、理解一次函数、常值函数的概念。 2、理解一次函数与正比例函数的关系。 3、会利用待定系数法求一次函数的解析式。 学习过程: 一、复......

    1-1物质的变化与性质导学案

     预习导学 一、物理变化和化学变化: 1、物理变化:没有生成 的变化。 特征: 新物质生成。 伴随的现象是物质的 或 的改变。日常生活中的 、 、 等都是物理变化。 2、化学变化(又......

    学与问导学案

    《学与问》导学案 学习目标: 1、正确、流利、有感情地朗读课文。 2、学会本课3个生字。理解由生字组成的词语。 3、联系课文说出诗句的意思。 4、了解议论文的体裁特点,理清文......

    浅谈导学案与教案

    浅谈导学案与教案 “导”就是指导、引导,是方向和方法;“学”不是讲,也不是教,是以学生的学为根本要求,是目的和形式;“案”是一种设计、一种方案、一种模式,不是知识、题目的简单......