第一篇:一元二次方程的实践与探索
一元二次方程的实践与探索
本人在班上了一节一元二次方程的实践与探索的探索课,其中产生了一些思考。
本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用二元一次方程的知识进行描述和解决;能力目标是能选择、处理数学信息,并做出合理的推断或大胆的猜测;能结合具体情境发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效解决问题,并能与他人交流思维的过程和结果。情感目标是乐于接受生活中的数学信息,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。本节的教学重点是通过创设探索情境,体现数学与现实生活的联系,进一步培养学生解决问题的能力。教学难点是数学建模思想的培养,从实际问题中抽象出数学模型,进而用数学知识来解决问题。
问题设置如下:某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空位也不超载。
(1)请你探求所有的可行性方案。
(2)请添加一个条件使之只有一种方案可行,并把它解答出来。
因本题需要学生自行建模,而大多学生只是枚举第一问的答案。对于学生的解答,请同学们作评价。教师适时调控,如:“你有什么理由说明你的答案就是正确的呢?确定没有遗漏?事实上,学生在教师质疑下产生自我批判,启发数学思考。学生开始主动寻求更为正确严谨的方式进行求解。
生1:(1)设租用8人座车x辆,4人座车y辆,依题意得:
8x+4y=36
x,y是非负整数,x0x1x2x3x4,,,,,y9y7y5y3y1
答:只有五种方案。分别是租9辆4人座车,或者1辆8人座车7辆4人座车,或者2辆8人座车5辆4人座车,或者3辆8人座车3辆4人座车,或者4辆8人座车1辆4人座车。
生2:(2)条件添加来两种车辆租用数量一样
8x4y36依题意得: xy
解之得: x3 y3
答:租用8人座车和4人座车各3辆。
生3:……
选用的问题是精心设计的学生较易接受的题目背景,这样在教学中学生容易产生亲切感,有利于教学活动的开展。但是对于比较难的题型或知识,应该事先布置给学生作预习,这样将有助于课堂教学和学生更深层次的理解。
第二篇:一元二次方程与证明题
一元二次方程与证明题
班级姓名
一.填空题
1.一元二次方程x=16的解是
2.若关于x的一元二次方程x2(k3)xk0的一个根是2,则另一个根是______.
3.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.
4.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是__________.5.一元二次方程x2mx30的一个根为1,则另一个根为.
6、△ABC中,AB=AC,∠B=50°,则∠A=____。
7、如果等腰三角形的底角为15°,腰长为6cm,那么这个三角形的面积为______。
8、矩形的两边长分别是 3cm 和 4cm,则对角线长____cm。
9、等腰梯形的锐角等于60°,它的两底分别为 15cm,19cm,则它的腰长为_____。
10、如果矩形一条较短的边是 5,两条对角线的夹角是 60°,则对角线长是____。
二.选择题
11.三角形两边的长是3和4,第三边的长是方程x212x350的根,则该三角形的周长为()
A.14B.12C.12或14D.以上都不对
12.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()
A.20x2
5222B.20(1x)25 2C.20(1x)25D.20(1x)20(1x)25
213.已知x2是一元二次方程xmx20的一个解,则m的值是()
A.3B.
32C.0D.0或3 14.若关于x的一元二次方程kx2x10有两个不相等的实数根,则k的取值范围是
(A)k1(B)k1且k0(c)k1(D)k1且k0
15.(2009山西省太原市)用配方法解方程x2x50时,原方程应变形为()
A.x16
C.x29 222B.x16 D.x292216、如图,□ABCD中,对角线AC、BD相交于O点,则图中全等的三角形共有()
A、1对B、2对C、3对D、4对
D C
17.已知一直角三角形的周长是 4+2 2,则这个三角形的面积是()A、5B、3 C、2 D、118、符合下列条件的四边形不一定是菱形的是()A、四边都相等
B、两组邻边分别相等
D、两条对角线分别平分一组对角
D B
C
E C D
C、对角线互相垂直平分
19、已知:梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,则∠C=()
A、30°B、45°C、60°D、75° 20、如图,延长正方形ABCD的一边BC至E,使CE=
AC,连结AE交CD于F,则∠AFC的度数是()A、112.5°B、120°C、122.5°D、135° 三.解下列方程
(1)x24x20.(2)x22x30
(3)5x22x0(4)x12x350
四.解答题
1.已知:CD平分∠ACB,BF是△ABC的高,若∠A=70°∠ABC=60°求∠BMC的度数。
2.已知:梯形ABCD中,AD∥BC,且AB=CD,E是BC中点
求证:△ABE≌△DCE。
3.BE、CD是△ABC的高,F是BC边的中点,求证:△DEF是等腰三角形。
D
E
C
4.菱形ABCD的对角线交于O点,DE∥AC,CE∥BD,求证:四边形OCED是矩形。
D E
5.小鹏等同学在“福田花市”租了个摊位销售年桔,平均每天可售出20盆,每盆盈利4
4元.除夕将至,他们决定适当降价促销。观察发现:如果每盆降价1元,则每天可多售出5盆年桔,但每天至多能销售150盆.若每天要盈利1600元,每盆年桔应降价多少元?
6.如图,正方形ABCD中,E、F分别是AB和AD上的点,已知CE⊥BF,垂足为M,求证:(1)
∠EBM=∠ECB;(2)BE=AF.
第三篇:实际问题与一元二次方程
实际问题与一元二次方程
(一)-------传播问题和比赛问题
列方程解应用题的一般步骤:(1)__________(2)__________(3)__________(4)__________(5)__________(6)__________。
1、有一人患了流感,经过两轮传染后共有
点121人患了流感,(1)每轮传染中平均一个人传染了几个
人?
(2)如果按照这样的传染速度,三轮传
染后有多少人患流感?
2、有一人患了流感,经过两轮传染后共有
100人患了流感,那么每轮传染中平均一个人传染的人数是_________,如果不及时控制,第三轮将又有_________人被传染?
3、某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出_________个分支?
4、某生物实验室需培养一群有益菌。现有
60个活体样本,经过两轮培植后,总和达到目24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌。(1)每轮分裂中平均每个有益菌可分裂
出多少个有益菌?、(2)按照这样的分裂速度,经过三轮后
有多少个有益菌?
5、(1)参加一次足球比赛的每两队之间都
进行两次比赛,共要比赛90场,共有多少个队参加比赛?
(2)参加一次篮球比赛的每两队之间都进行两次比赛,共要比赛15场,共有多少个队参加比赛?
6、生物兴趣小组的同学将自己制作的标本
向本组其他成员各赠送一件,全组共互赠了182件,则该兴趣小组共有多少名同学?
7、在某次聚会上,每两个人都握了一次手,所有人共握手10次,则有多少个人参加这次聚会?
8、某航空公司有若干个飞机场,每两个飞
机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场多少个?
9、(1)两个相邻偶数的积是168,求这两个偶数。(2)两个连续偶数的和为6和8,则这两个连续偶数是________。
第四篇:实际问题与一元二次方程教案
教学过程
〖活动1〗 问题 通过上节课的学习,大家学到了哪些知识和方法? 教师提出问题,学生回忆,选一位同学作答,其他同学补充.在本次活动中,教师应重点关注:(1)学生对列方程解应用问题的步骤 是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.(活动1为学生创设了一个回忆、思考的情景,又是本课一种很自然的引入,为本课的探究活动做好铺垫).〖活动2〗 问题 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).(1)本题中有哪些数量关系?
(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数?(4)列方程并得出结论.(5)反思解决问题的关键是什么?
教师展示课件,教师提出问题(1)学生分析,请一位同学回答,教师在题目中指出数量关系.教师提出问题(2)学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9︰7.问题(1)(2)都是帮助学生更好的理解题意,为后面的解题做以铺垫.教师提出问题(3)学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.问题(3)是活动2的中心环节,在本次活动中,教师应重点关注:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)学生回答问题时的语言表达是否准确.学生充分的讨论,得出多种不同的方法,激发学生的学习热情,使学生体会解决问题的方法多样性.为活动3埋下一个伏笔.教师提出问题(4)学生分组,分别按问题三中所列的方程来解答,选代表展示解答过程.教师提出问题(5)学生充分的讨论,丰富解题经验.〖活动3〗某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条宽度相同的道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.教师展示课件,请一位同学朗读题目.教师提出问题,学生回答方案1,学生通过探究与讨论,活跃了解题思路.教师提出方案(2)学生思考.因为有活动2的基础,选一位同学回答这一组问题即可,如有不完全的地方,教师适当补充.教师做屏幕演示,特别提醒学生:剩余草坪的面积,是否就是原草坪的面积减去2条路的面积?以引导学生注意道路重叠部分的处理.活动2是针对活动2的巩固性练习.《思考》:能不能把纵、横两条路移动一下,使列方程容易些? 学生分组讨论,教师指导.引领学生 讨论后请一位同学回答.教师引领学生发现两个图形都存重叠部分,但除此之外的剩余部分,第一个图是一个完整的矩形,易于表示;而第二个图中分为4块,所以不容易表示.《思考》是活动3的中心环节,以图形对比的问题为 引导,通过对比两个图形的联系与区别,启发学生方案1为模型,构建草坪问题的解题思路.学生分组讨论,画图,上台演示.教师与学生一起评价,总结图形变换的基本原则.在本次活动中,教师应重点关注:(1)学生的学习效果;(2)使学生充分体会图形变换的灵活性;(3)学生对图形的观察、联想能力;(4)教师要强调图形变换中图形改变、位置改变、关键量不变的原则.在学生充分的思维活动之后,学生会自然产生动手实践的欲望,教师可以给学生一定的空间去发挥想象,同时也要注意对图形变换的指导,可以对部分不太合适的答案也进行一下点评.〖活动4〗 问题 通过本课的学习,大家有什么新的收获和体会?
〖活动5〗当堂测试
布置作业: 教科书53页,习题21.3第5、8题;教科书58页,复习题21第7、10题,教师应重点关注:
第五篇:21.3.1 实际问题与一元二次方程
21.3.1 实际问题与一元二次方程(1)
学习目标:
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.
2.经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3.通过解决传播问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
4.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,了解数学对促进社会进步和发展人类理性精神的作用. 重点、难点
重点:列一元二次方程解有关传播问题、平均变化率问题的应用题 难点:发现传播问题、平均变化率问题中的等量关系
【课前预习】(阅读教材P45 — 46 , 完成课前预习)探 究:
问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析:
1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;
2、第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。则:列方程
,解得
即平均一个人传染了 个人。
再思考:如果按照这样的传染速度,三轮后有多少人患流感?
问题2:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.001)
绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大.
相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.
分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为 元,两年后甲种药品成本为 元. 依题意,得
解得:x1≈,x2≈。
根据实际意义,甲种药品成本的年平均下降率约为。
②设乙种药品成本的平均下降率为y.则,列方程:
解得: 答:两种药品成本的年平均下降率 .
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态?
【课堂活动】
活动1:预习反馈,分析问题
活动2:典型例题,初步应用 例1:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
例2:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8460kg,求水稻每公顷产量的年平均增长率.活动3:归纳小结
1.列一元二次方程解应用题的一般步骤:(1)“设”,即设_____________,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中________ 关系列方程;(3)“解”,即求出所列方程的_________;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题。2.增长率=(实际数-基数)/基数。平均增长率公式:Qa(1x)其中a是增长(或降低)的基础量,x是平均增长(或降低)率,2是增长(或降低)的次数。
【课后巩固】
1.某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人?
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()
A.x(x+1)=182
B.x(x-1)=182
C.2x(x+1)=182
D.x(1-x)=182×2 3.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().
A.12人
B.18人
C.9人
D.10人
4.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?
5.参加一次足球联赛的每两个队之间都进行两次比赛(双循环比赛),共要比赛90场,共有多少个队参加比赛?
6.两个连续偶数的积为168,求这两个偶数.7.某商品原来单价96元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为54元,求平均每次降价的百分数?
8.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.96%,平均每次降息的百分率是多少?(结果精确到0.01﹪)
9.一个直角三角形的两条直角边的和是14 cm,面积是24 cm2,求两条直角边的长。
10.一个菱形两条对角线长的和是10cm,面积是12 cm2,求菱形的周长。