第一篇:教师版:推理与证明专题资料
第十讲 推理与证明专题资料
一、推理:
(一)合情推理:归纳推理、类比推理.1.归纳推理:根据某类事物的部分对象具有的某些特征,推出该类事物的全部对象都具有这种特征的推理,是“部分到整体,个别到一般”的推理。
2.类比推理:两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有相似特征的推理,是“特殊到特殊”的推理.(二)演绎推理:根据一般性的真命题(或逻辑规则)推导出特殊性命题为真的推理。常用模式“三段论”:大前提、小前提、结论。
【历练巩固】
例1(11,陕西,13)观察下列等式
1=
12+3+4=9
3+4+5+6+7=2
54+5+6+7+8+9+10=49
„„
照此规律,第n个等式为
解: n(n1)(n2)...(3n2)(2n1)2。
练习1(11,江西,7)观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为()
A、3125B、5625C、0625D、8125 解:D.例2(09,上海,3)以下是面点师一个工作环节的数学模型: 在数轴上取闭区间0,1,对折(0与1两点重合)后再均匀地拉成一个单位长度线段(原来的和变为,变为1等)算一次操作,重复操作,第n次操作后变为1的点有个.解:用现场折纸条的操作,可知有2n1个.3414121
2ABC三边上的高为hA,hB,hC,例3设P为ABC内一点,P到三边的距离为lA,lB,lC,则有lAlBlChAhBhC
类比到空间中,设P是四面体ABCD内一点,四顶点到对面的距离分别为hA,hB,hC,hD,P到四个面的距离为lA,lB,lC,lD,则有:
解:面积法:
llAlBlClll1;体积法:ABCD1 hAhBhChAhBhChD
二、证明:
(一)直接证明:
1.分析法:从欲证结论出发,对结论进行等价变形,建立未知结论和已知的“条件,结论”因果关系;
2.综合法:从已知条件和结论出发,以演绎推理中的“三段论”规则为工具,推出未知结论;
3.归纳法:证明格式为:
①先证当nn0时命题成立(n0为需证的初始自然数);
②假设nkkn0时命题成立,并在此前提下可以推出nk1时命题也成立;
由①②,命题对一切nn0的自然数恒成立.(二)间接证明:
反证法:证明欲证命题的等价命题——逆否命题.例3(反证法)给定实数a,a0且a1,设函数yx11xR,x.ax1a
求证:经过改函数图象上任意两个不同点的直线不平行于x轴.(253-14.4)解:y1y2(x1x2),即:x11x12(x11)(ax21)(x21)(ax11)ax11ax2
1(z1)(x1x2)0
例4(分析法)在ABC中,A,B,C成等差数列,其对边分别为a,b,c.求证:113.(253.4)abbcabc
ca1a2c2acb2;B600,用余弦定理即可.abac解:变形为
例5(综合法、归纳法)用综合法和归纳法两种方法证明:(255.14.6)
111111111(nN)2342n12nn1n2nn
练习2(08,辽宁,21)在数列an,bn中,a1=2,b1=4,且an,bn,an1成等差数列,bn,an1,bn1成等比数列(nN*).求a2,a3,a4及b2,b3,b4,由此猜测an,bn的通项公式,并证明你的结论.2解:由条件得2bnanan1,an1bnbn1
由此可得a26,b29,a312,b316,a420,b425.
猜测ann(n1),bn(n1)2.
用数学归纳法证明:
①当n=1时,由上可得结论成立.
②假设当n=k时,结论成立,即akk(k1),bk(k1)2,那么当n=k+1时,ak12bkak2(k1)2k(k1)(k1)(k2),2akbk12(k2)2. bk
所以当n=k+1时,结论也成立.
由①②,可知ann(n1),bn(n1)2对一切正整数都成立.
【选择题】
1.用数学归纳法证明“Sn
等于()A.1 211111(nN*)”时,S1n1n2n33n11123111234B.C.D.以上都不对
1.C考查:归纳法初值
【解】当n=1时,左边最后一个式子的分母为4,所以为
2.用数学归纳法证明“1111.234111nn(n∈N*,n>1)”时,由n=k(k2321
>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A.2k1B.2k1C.2kD.2k1
2.C 考查:归纳法第二步
【解】左边的特点:分母逐渐增加1,末项为
末项为111;由n=k,末项为到n=k+1,2n12k11k,∴应增加的项数为22k112k12k
11113.设f(n)=+++„+n∈N *),那么f(n+1)-f(n)等于()n1n2n32n
1111A.B.C.+2n12n22n12n2
11D.- 2n12n2=
3.D 考查:归纳法第二步
11111 + +„+ + +-n2n32n2n12n2
11111111(++„+)=+-=-.n1n2n12n12n2n12n22n2fn1)-(f)n【解】(=
第二篇:推理与证明
推理与证明
1. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个
图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)
表示第n幅图的蜂巢总数.则f(4)=___37
__;f(n)=_3n23n
1__________.2.下面是按照一定规律画出的一列“树型”图:
设第n个图有an个树枝,则an1与an(n≥2)之间的关系是.
答案:an12an
2若平面内有n条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这n条直线将平面分成了几部分。
3.类比平面向量基本定理:“如果e1,e2是平面内两个不共线的向量,那么对于平面内任一向量a,有且只有一对实数1,2,使得a1e12e2”,写出空间向量基本定理是.
如果e1,e2,e3是空间三个不共面的向量,那么对于空间内任一向量a,有且只有一对实数
1,2,3,使得a1e12e23e
34.写出用三段论证明f(x)x3sinx(xR)为奇函数的步骤是: 大前提. 小前提结论
满足f(x)f(x)的函数是奇函数,大前提
f(x)(x)sin(x)xsinx(xsinx)f(x),小前提
所以f(x)x3sinx是奇函数.结论5. 已知f(n)1 答案:
12
1k
1n
(nN),用数学归纳法证明f(2)
n
n2
时,f(2k1)f(2k)
等于.
122
k
k1
6lg1
.53a
bclg121a2b
7.用数学归纳法证明1+2+3+„
+n2=
n
n2,则当n=k+1时左端应在n=k的基础上加
上.(k+1)+(k+2)+(k+3)++(k+1)
8
m,n成立的条件不
等式.
当mn20
9.在数列an中,a12,an1
答案:an10.
26n
5an3an1
(nN),可以猜测数列通项an的表达式为
.
若三角形内切圆的半径为r,三边长为a,b,c,则三角形的面积等于S
r(abc),根据类比推理的方法,若一个四面体的内切球的半径为R,四个面的面积分别是
V. S1,S2,S,S,则四面体的体积3
4答案:R(S1S2S3S4)
11.已知f(x)ax
x2x1
(a1),证明方程f(x)0没有负数根.假设x0是f(x)0的负数根,则x00且x01且ax
0a
x0
x02x01,10
x02x01
解得1,12
这与x00矛盾,故方程f(x)0x02,没有负数根.12.已知命题:“若数列an是等比数列,且an
0,则数列bn
nN)
也是等
比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.
解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列an是等差数列,则数列bn
a1a2an
n
也是等差数列.
n(n1)d
2n
a1
d2(n1)
证明如下:
设等差数列an的公差为d,则bn所以数列bn是以a1为首项,13.用数学归纳法证明等式1(n212)2(n222)n(n2n2)都成立.
(1)当n1时,由以上可知等式成立;
(2)假设当nk时,等式成立,即1(k212)2(k222)k(k2k2)则当nk1时,1[(k1)1]2[(k1)2]k[(k1)k](k1)[(k1)(k1)] 1(k1)2(k2)k(kk)(2k1)2(2k1)k(2k1)14k
a1a2an
n
na1,d2
为公差的等差数列.
n
n
对一切正整数n
k
k,22222222
222222
k(2k1)·
k(k1)
(k1)
(k1)
.
由(1)(2)知,等式结一切正整数 都成立.
14.用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.2×1+11+2
(1)当n=1时,4+3=91能被13整除.(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2).∵42k+1·13能被13整除,42k+1+3k+2能被13整除, ∴当n=k+1时也成立.由(1)(2)知,当n∈N*时,42n+1+3n+2能被13整除.15.用数学归纳法证明:对一切大于1的自然数,不等式(1+
2n12
13)(1+)„(1+
112n1)>
均成立.43
(1)当n=2时,左边=1+=;右边=
.∵左边>右边,∴不等式成立.(2)假设n=k(k≥2,且k∈N*)时不等式成立,即(1+)(1+)„(1+
12k1)>
2k12
12k1
.12(k1)1
]
则当n=k+1时,(1+)(1+)„(1+>
2k12)>[1
4k
2k1
·
2k22k1
=
2k222k1
=
4k
8k4
>
8k3
=
2k3
=
2(k1)1
.22k122k122k1
∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.16。试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相
等时,均有:an+cn>2bn.设a、b、c为等比数列,a=∴a+c=
n
n
bq,c=bq(q>0且q≠1),bq
nn
+bnqn=bn(1q
n
+qn)>2bn.a
n
(2)设a、b、c为等差数列,则2b=a+c猜想下面用数学归纳法证明:
①当n=2时,由2(a+c)>(a+c),∴②设n=k时成立,即则当n=k+1时,>
c
2n
>(ac2)n(n≥2且n∈N*)
a
c2
(ac2)
a
k
c2
k
1k
(1
4ac2),k
a
k1
c2
(ak+1+ck+1+ak+1+ck+1)
ac2
(ak+1+ck+1+ak·c+ck·a)=
(ak+ck)(a+c)>()k·(ac2)=(ac2)k+1
17.平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证这n个圆把平面分成nn2个部分。
证明:(1)当n1时,一个圆把平面分成两个区域,而12122,命题成立.
(2)假设n=k(k≥1)时,命题成立,即k个圆把平面分成kk2个区域.
当n=k+1时,第k+1个圆与原有的k个圆有2k个交点,这些交点把第k+1个圆分成了2k段弧,而其中的每一段弧都把它所在的区域分成了两部分,因此增加了2k个区域,共有k2k22k(k1)2(k1)2个区域. ∴n=k+1时,命题也成立.
由(1)、(2)知,对任意的n∈N*,命题都成立.
18.如图(1),在三角形ABC中,ABAC,若ADBC,则AB2BD·BC;若类比该命题,如图(2),三棱锥ABCD中,AD面ABC,若A点在三角形BCD所在平面内的射影为M,则有什么结论?命题是否是真命题.
解:命题是:三棱锥ABCD中,AD面ABC,若A点在三角形BCD所在平面内的射影
为M,则有S△S△BCM·S△BCD是一个真命题. ABC证明如下:
在图(2)中,连结DM,并延长交BC于E,连结AE,则有DEBC. 因为AD面ABC,所以ADAE. 又AMDE,所以AE2EM·ED. 于是S
△ABC
111BC·AEBC·EM·BC·EDS△BCM·S△BCD. 222
19. 已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn=
an2
n
(n=1,2,„),求证:数列{cn}是等差数列.(1)∵ Sn+1=4an+2,∴Sn+2=4an+1+2.两式相减,得Sn+2-Sn+1=4an+1-4an(n=1,2,„), 即an+2=4an+1-4an,变形得an+2-2an+1=2(an+1-2an).∵ bn=an+1-2an(n=1,2,„), ∴ bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列.(2)由S2=a1+a2=4a1+2,a1=1.得a2=5,b1=a2-2a1=3.故bn=3·2n-1.∵ cn=
an2
n
(n=1,2,„),∴ cn+1-cn=
an12
n1
an2
n
=
an12an
n1
=
bn2
n1
.34
将bn=3·2n-1代入得cn+1-cn=(n=1,2,„),由此可知,数列{cn}是公差为的等差数列,它的首项c1=
a12
=,故cn=n-(n=1,2,„).131
第三篇:推理与证明
“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。推理与证明贯穿于数学的整个体系,它的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用。
学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。
《新标准》要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例。”也就是要求学生在获得数学结论时要经历合情推理到演绎推理的过程。合情推理的实质是“发现---猜想---证明”,因而关注合情推理能力的培养实际上就是希望教师能够重视数学知识的产生和发展过程,发展学生的探究和创新精神。
第四篇:推理与证明
浅谈我对推理与证明的几点认识
初中数学中,推理与证明是非常重要的,主要是培养学生的逻辑思维能力,推理与证明是人类认识世界的重要手段。中学数学教育的一个重要职能是培养学生的推理与证明能力,这也是数学中几何教学的优势所在。
传统数学教学中,就是以几何教学为主来培养学生的逻辑推理能力,以及学习数学证明方法的。但在新课程的教学中由于计算机和多媒体的广泛应用,使得几何代数学化,加大实验几何的内容,用学生日常生活中每天都可以看到和使用着的“形”的知识,借助直观,扩大公理体系,同时采用几何变换的语言对欧氏几何予以重新组织,让学生体会空间逻辑化的方法。
首先,要使学生掌握现代生活学习中应该具有的数学知识和技能,要培养人的能力。其次,要培养人,要为未来服务的。数学培养人的抽象思维和推理能力。再次,要培养人的应用意识、创新意识。课程标准很突出的一个变化,除了知识技能能力方面,特别提出了培养学生的情感、态度、价值观这方面的要求。推理最基本的作用都是基础性的、奠基的思维训练,是与学生未来的生活、工作、职业密切相关的。有条理地思考,言之有据,而且不是一句言之有据,而是步步言之有据,这个训练是数学的独特性。从思维发展的角度考虑,思维一般分成几个过程:一个是形成概念的过程;一个是做出判断的过程;再一个是进行推理的过程。就是这概念、判断、推理,它是一个逐步上升的。如果把这个思维过程表达出来,就是数学当中经常说的定义(对应概念的),命题(对应判断的),证明(对应推理的)。
课标对推理比较强调合情推理和演绎推理。在注重演绎推理的同时还注重合情推理,尽管有时合情推理不严谨,但是对人发现新的东西,导致你产生一些新的猜想,是非常重要的,也离不开的。
我发现初中学生基于学生年龄的特点,学生在空间想象能力和抽象思维能力方面还不够成熟,缺乏解决几何问题的经验,学习几何的困难的较大。大部分学生不知道什么是推理,部分学生不明白为什么要推理。学生不会建立知识与题目之间的关系,遇到证明问题,不会分析,不会运用定理去证明;学生不会运用几何的语言去书写,逆向思维能力差,步骤没有条理。难于根据几何语言画出正确的图形。识图能力较差.不能将已知条件和图有机结合起来。学生不会添加辅助线,不会总结规律;学生觉得证明题太难、对枯燥的数学知识没有兴趣。
在教学中,我们要站在学生的角度去思考问题。可从总体的上去换位思考,充分估计学生们可能出现的各种情况。主要是在全班学生的认知水平上去考虑,灵活运用各种方法让大部分学生都能理解、接受的方式去指引、讲解,以达到教学目标。另外,也可以有针对性地从个别学生位置去换位思考,主要是对个别提出的不理解的特别问题,我们要站在他(她)的角度、认识水平、知识点、思路上去思考,寻求适合他(她)方法去指引、讲解。这样往往能够起到“药到病除”的功效,达到事半功倍的效果。
推理与证明的认识
发布者:林志刚发布日期:2011-11-28 12:40:10.0
数学中的推理与证明的学习主要是培养学生的逻辑思维能力,即推理与证明的能力。推理与证明是人类认识世界的重要手段,也是数学学习的重要组成部分。中学数学教育的一个重要职能是培养学生的推理与证明能力,这也是数学中几何教学的优势所在。
一、推理与证明能力的培养在传统数学教学和新课程数学教学中的区别。
传统数学教学中,就是以几何教学为主来培养学生的逻辑推理能力,以及学习数学证明方法的。但在新课程的教学中由于计算机和多媒体的广泛应用,使得几何代数学化,加大实验几何的内容,用学生日常生活中每天都可以看到和使用着的“形”的知识,借助直观,扩大公理体系,同时采用几何变换的语言对欧氏几何予以重新组织,让学生体会空间逻辑化的方法。
二、数学课程标准对学生推理能力的要求。
首先,要使学生掌握现代生活学习中应该具有的数学知识和技能,要培养人的能力。其次,要培养人,要为未来服务的。数学培养人的抽象思维和推理能力。再次,要培养人的应用意识、创新意识。课程标准很突出的一个变化,除了知识技能能力方面,特别提出了培养学生的情感、态度、价值观这方面的要求。
三、增强培养学生的推理能力的意识。
推理最基本的作用都是基础性的、奠基的思维训练,是与学生未来的生活、工作、职业密切相关的。有条理地思考,言之有据,而且不是一句言之有据,而是步步言之有据,这个训练是数学的独特性。
从思维发展的角度考虑,思维一般分成几个过程:一个是形成概念的过程;一个是做出判断的过程;再一个是进行推理的过程。就是这概念、判断、推理,它是一个逐步上升的。如果把这个思维过程表达出来,就是数学当中经常说的定义(对应概念的),命题(对应判断的),证明(对应推理的)。
课标对推理比较强调合情推理和演绎推理。在注重演绎推理的同时还注重合情推理,尽管有时合情推理不严谨,但是对人发现新的东西,导致你产生一些新的猜想,是非常重要的,也离不开的。
四、留意观察,准确把握学生现状。
我发现初中学生基于学生年龄的特点,学生在空间想象能力和抽象思维能力方面还不够成熟,缺乏解决几何问题的经验,学习几何的困难的较大。大部分学生不知道什么是推理,部分学生不明白为什么要推理。学生不会建立知识与题目之间的关系,遇到证明问题,不会分析,不会运用定理去证明;学生不会运用几何的语言去书写,逆向思维能力差,步骤没有条理。难于根据几何语言画出正确的图形。识图能力较差.不能将已知条件和图有机结合起来。学生不会添加辅助线,不会总结规律;学生觉得证明题太难、对枯燥的数学知识没有兴趣。
五、换位思考,以人为本,充分估计学生们可能出现的各种情况。
在教学中,我们要站在学生的角度去思考问题。可从总体的上去换位思考,充分估计学生们可能出现的各种情况。主要是在全班学生的认知水平上去考虑,灵活运用各种方法让大部分学生都能理解、接受的方式去指引、讲解,以达到教学目标。另外,也可以有针对性地从个别学生位置去换位思考,主要是对个别提
出的不理解的特别问题,我们要站在他(她)的角度、认识水平、知识点、思路上去思考,寻求适合他(她)方法去指引、讲解。这样往往能够起到“药到病除”的功效,达到事半功倍的效果。
第五篇:推理与证明
推理与证明
学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教材里也有简单的说理,小学教材里有简单地说理题,意在培养学生的逻辑思维。
初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。
随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。
关于开展课题学习的实践与认识
新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。
经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:
1.希望为学生提供更多的实践与探索的机会。
2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。
3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。
4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。
5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。
课题学习首先提出一个主问题(问题是一个载体),然后给出资料,利用资料挖掘知识。在这个过程中,多关注知识的价值,淡化数学术语,让学生充分经历数学化的过程,激发学生参与的热情,使其体会到学习数学的乐趣,始终以学生为主体,明白课题学习是为学习服务的。