第一篇:2012高数竞赛24111报名表
中国地质大学(武汉)2012高数竞赛报名表
所在学院:资源学院学院负责人:
总计人数:
10负责人联系电话:***
第二篇:高数竞赛(本站推荐)
高数
说明:请用A4纸大小的本来做下面的题目(阴影部分要学完积分之后才能做)
第一章 函数与极限
一、本章主要知识点概述
1、本章重点是函数、极限和连续性概念;函数是高等数学研究的主要对象,而极限是高等数学研究问题、解决问题的主要工具和方法。高等数学中的一些的重要概念,如连续、导数、定积分等,不外乎是不同形式的极限,作为一种思想方法,极限方法贯穿于高等数学的始终。
然而,极限又是一个难学、难懂、难用的概念,究其原因在于,极限集现代数学的两大矛盾于一身。(1)、动与静的矛盾:极限描述的是一个动态的过程,而人的认识能力本质上具有静态的特征。(2)无穷与有穷的矛盾:极限是一个无穷运算,而人的运算能力本质上具有有穷的特征。极限就是在这两大矛盾的运动中产生,这也是极限难学、难懂、难用之所在。
连续性是高等数学研究对象的一个基本性质,又往往作为讨论函数问题的一个先决条件,且与函数的可导性、可积性存在着不可分割的逻辑关系。
2、从2001年第一届天津市大学数学竞赛至今共八届竞赛试题分析,函数极限及其连续性在有的年份占了比较大的比重,连续性、极限与导数、积分等综合的题目也要引起足够的重视;从最近几年的考题也可以看出,有个别题目是研究生入学考试题目的原题,如2004年竞赛试题二为1997年研究生入学考试题目;2006年竞赛试题一为2002年研究生入学考试试题;2005年竞赛试题一为1997年研究生入学考试试题等,这也从侧面反映了部分试题难度系数。
二、证明极限存在及求极限的常用方法
1、用定义证明极限;
2、利用极限的四则运算法则;
3、利用数学公式及其变形求极限;(如分子或分母有理化等)
4、利用极限的夹逼准则求极限;
5、利用等价无穷小的代换求极限;
6、利用变量代换与两个重要极限求极限(也常结合幂指函数极限运算公式求极限);(2)利用洛必达法则求极限;
7、利用中值定理(主要包括泰勒公式)求极限;
8、利用函数的连续性求极限;
9、利用导数的定义求极限;
10、利用定积分的定义求某些和式的极限;11先证明数列极限的存在(常用到“单调有界数列必有极限”的准则,再利用递归关系求极限)
12、数列极限转化为函数极限等。当然,这些方法之间也不是孤立的,如在利用洛必达法则时经常用到变量代换与等价无穷小的代换,这大大简化计算。
对于定积分的定义,要熟悉其定义形式,如
(二)高数
极限的运算
要灵活运用极限的运算方法,如初等变形,不仅是求极限的基本方法之一,也是微分、积分运算中经常使用的方法,常用的有分子或分母有理化、分式通分、三角变换、求和等。
高数
高数
高数
(四)连续函数的性质及有关的证明、极限与导数、积分等结合的综合性题目。
16、(2006年数学一)
(五)无穷小的比较与无穷小的阶的确定常用工具——洛必达法则与泰勒公式。
高数
(六)由极限值确定函数式中的参数
求极限式中的常数,主要根据极限存在这一前提条件,利用初等数学变形、等价无穷小、必
达法则、泰勒公式等来求解。
高数
四、练习题
高数
高数
高数
高数
五、历届竞赛试题
2001年天津市理工类大学数学竞赛
2002年天津市理工类大学数学竞赛
2003年天津市理工类大学数学竞赛
高数
高数
2004年天津市理工类大学数学竞赛
2005年天津市理工类大学数学竞赛
高数
2007年天津市理工类大学数学竞赛
高数
2010年天津市大学数学竞赛一元函数微分学部分试题
一、填空
注:本题为第十届(1998年)北京市大学数学竞赛试题
二、选择
三、计算
四、证明
高数
首届中国大学生数学竞赛赛区赛(初赛)试题2009年
一、填空
二、计算
第三篇:高数竞赛策划书
河南科技大学
2011级“高等数学”竞赛策划书
大学的荣誉,不在于它的校舍和人数,而在于它一代又
一代人的质量。我想这句话真正的注解了一个学校的内涵,今天我们是一个学院人,以我们学院的荣誉为骄傲。而明天,我们应该让学院因曾经有过我们而感到欣慰。我院决定面向2011级全体学生进行开展“高等数学竞赛”活动。具体策划方案如下:
一、主题
“高等数学”竞赛
二、主办单位
材料学院
三、目的和意义
1.通过竞赛可以激发广大学生学习高等数学的兴趣和热情。
2.我院多数专业的专业课程中涉及较多的数学知识,对学生
更好的学习专业知识有很大的帮助。
3.通过竞赛,使学生加深学习数学知识和数学思想,有利于
学生提高逻辑思维能力,提升解决实际问题的素质。
4.通过学院竞赛,可以宣传与扩大我院在学校中的知名度。
四、竞赛方式与创新点
1.竞赛以考试的形式进行。
2.本次竞赛将增加学生以专业为背景,为以后设计数学建模
并解决问题题奠定基础。
五、竞赛工作安排
1.张贴宣传海报
张贴时间:4月15日
2.场地申请
3.邀请老师配合出题
4.试卷批改
学习委员监考并批阅
批阅时间4月26日(周四)下午5:40
5.赛后卫生打扫
六、竞赛办法
1.竞赛对象
材料学院2011级学生,每班5—10名
2.竞赛报名
各班学生报名到班级学习委员,然后上报年级学习委员
3.竞赛内容
高等数学第六版上册1/3,下册2/3。(难易适中)
4.竞赛时间
2012年4月26日(周四)下午3:00---5:00
5.竞赛地点
开元校区教学楼五区416
6.竞赛奖励
一等奖1名:德育分30分+50元奖品+奖状
二等奖3名:德育分20分+30元奖品+奖状
三等奖6名:德育分10分+20元奖品+奖状 赛后公示
以板报或院报的形式公布
七、竞赛要求
遵守考试秩序,诚信答卷,杜绝作弊。
材料学院
2012年4月10日
第四篇:极限连续-高数竞赛超好
高数竞赛例题
第一讲 函数、极限、连续
例1.例2.例3.例4.例5.例6.例7.例8.例9.lim1nn(1n2nn).lim135(2n1)246(2n)n
limx0x35x,其中[]为取整函数
lim1cosxx2x0
lim(cosnn)n2
lim(xxaxa)2x1e,求常数a.lim(sinx2xcos1x)x
lim[(nnn32n21)en1n]
6limln(13x)(e2x3x01)sinx2 例10.例11.例12.lim1tanx1sinx2x0xln(1x)x
limln(12)ln(1xx3x)
limsinxxcosxsinx3x0
例13.已知f(x)在x0的某邻域内有连续导数,且lim(sin2xx0f(x)xx)2,求 f(0),f(0).例14.例15.例16.lim(nnn12nn222nnn22)
2nsinsinsinnnnlimn11n1nn2n
xlim[xx1(axb)]0,求常数a,b.2例17.设f(x)nlim
x2n1axbxx2n21为连续函数,求a,b.例18.设f(x)在(,)上连续,且f(f(x))x,证明至少,使得f().....................................................................................................................极 限
例1.例2.nlim(n1nn122nn22nnnn2)
limnk1knk122
先两边夹,再用定积分定义 例3.例4.例5.设limx0 例6.例7.1x2lim(n1)nnn1nsin1n
limee2xsinx2x0x[ln(1xx)ln(1xx)]
ln(1)f(x)tanx5,求limx2x021xf(x).12(3sinttcos)dt0tlimxx0(1cosx)ln(1t)dtx0
xlimln(2e2xx1)xxsinx1
例8.例9.limexx0100
xlim(xxxx)
1例10.xxxlima1a2anx,其中,ax0.n1,a2,an均为正数
例11.已知2nf(x)limxe(1x)nxene(1x)nx2n1,求0f(x)dx.例12.设10ab,求limanbnnn
例13.设f(x)在(,)内可导,且limf(x)ex,xlim的值.xclim[f(x)f(x1)],求cxxcx
例14.设f(x)在x0的某邻域内二阶可导,且f(0)0,x又已知)dtlim0f(tx0xsinx0,求,.例15.当x1时,lim(1x)(1x2)(1x4)n(1x2)n
例16.当x0时,求limxncosx2cosx4cos2n
例17.lim(11(11n22)(1132)n2)
例18.lim1nnnn(n1)(2n1)
limf(x)x0x0,连 续
例1.求f(x)lim
例2.设g(x)在x0的某邻域内连续,且lim1g(x2t)dt102x1f(x)2abcosx2xx0x0x01x1x2n的间断点,并判断其类型
ng(x)1xn0a,已知
在x0处连续,求a,b的值.例3.证方程ln实根.例4.f(x)在[a,b]上连续,且acdb,证:在(a,b)内至少存在xxe01cos2xdx在区间(0,)内有且仅有两个不同,使得pf(c)qf(d)(pq)f(),其中p,q为任意正常数.例5.设f(x)在(a,b)内连续,且x1,x2,,xn(a,b),试证:(a,b),使
例6.试证方程xasin且它不超过ba.例7.设f(x),g(x)在(,)上连续,且g(x)0,利用闭区间上连续函数的性质,证明存在一点[a,b],使abf()1n[f(x1)f(x2)f(xn)].xb,其中a0,b0,至少存在一个正根,并
f(x)g(x)dxf()g(x)dx
ab
第五篇:高数论文
高数求极限方法小结
高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发展过程中,研究对象发生了很大的变化。也正是在这一背景下,极限作为一种研究事物动态数量关系的方法应运而生。极限,在学习高数中具有至关重要的作用。众所周知,高等数学的基础是微积分,而极限又是微积分的基础,我们不难从此看出极限与高等数学之间的相关性。同时根限又将高等数学各重要内容进行了统一,在高等数学中起到了十分重要的作用。极限的概念是高等数学中最重要也是最基本的概念之一。作为研究分析方法的重要理论基础,它是研究函数的导数和定积分的工具,极限的思想和方法也是微积分中的关键内容。在理解的基础上,熟练掌握求极限的方法,能够提高高等数学的学习能力。下面,我总结了一些求极限的方法:
一、几种常见的求极限方法
1、带根式的分式或简单根式加减法求极限:
1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置。)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式。
2、分子分母都是有界变量与无穷大量加和求极限:
分子分母同时除以该无穷大量以凑出无穷小量与有界变量的乘积结果还是无穷小量。
3、等差数列与等比数列求极限:用求和公式。
4、分母是乘积分子是相同常数的n项的和求极限:列项求和。
5、分子分母都是未知数的不同次幂求极限:看未知数的次幂,分子大为无穷大,分子小为无穷小或须先通分。
6、利用等价无穷小代换: 这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小。
(有界函数与无穷小的乘积仍是无穷小。(3)非零无穷小与无穷大互为倒数。(等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷代替。)(5)只能在乘除时使用,但并不是在加减时一定不能用,但是前提必须证明拆开时极限依然存在。)还有就是,一些常用的等价无穷小换
7、洛必达法则:(大题目有时会有提示要你使用这个法则)
首先它的使用有严格的前提!!!!
1、必须是X趋近而不是N趋近!!!(所以当求数列极限时应先转化为相应函数的极限,当然,n趋近是x趋近的一种情况而已。还有一点,数列的n趋近只可能是趋近于正无穷,不可能是负无穷)
2、必须是函数导数存在!!!(假如告诉你g(x),但没告诉你其导数存在,直接用势必会得出错误的结果。)
3、必须是0/0型或无穷比无穷型!!!当然,还要注意分母不能为零。洛必达法则分为三种情况: 1、0/0型或无穷比无穷时候直接用 2、0乘以无穷
无穷减无穷(应为无穷大与无穷小成倒数关系)所以,无穷大都写成无穷小的倒数形式了。通项之后就能变成1中的形式了。3、0的0次方
1的无穷次方
对于(指数幂数)方程,方法主要是取指数还是对数的方法,这样就能把幂上的函数移下来,就是写成0与无穷的形式了。
(这就是为什么只有三种形式的原因)
8.泰勒公式
(含有e的x次方的时候,尤其是含有正余弦的加减的时候,特别要注意!!!)
E的x展开 sina展开 cosa展开 ln(1+x)展开 对题目简化有很大帮助
泰勒中值定理:如果函数f(x)在含有n的某个区间(a,b)内具有直到n+1阶导数,则对任意x属于(a,b),有:
F(x)=f(x0)+
+
+
…………
+
+Rn(X)
其中Rn(X)=。。。。。这里的 ke see 是介于x与x0之间的某个值。
9、夹逼定理
这个主要介绍的是如何用之求数列极限,主要看见极限中的通项是方式和的形式,对之缩小或扩大。
10、无穷小与有界函数的处理方法
面对复杂函数的时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定注意用这个方法。
面对非常复杂的函数 可能只需要知道他的范围结果就出来了!!!
11、等比等差数列公式的应用(主要对付数列极限)
(q绝对值要小于1)
12、根号套根号型:约分,注意!!别约错了
13、各项拆分相加:(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数。
14、利用两个重要极限
这两个极限很重要。。对第一个而言是当X趋近于0的时候sinx比上x的值,第二个x趋近于无穷大或无穷小都有对应的形式
15、利用极限的四则运算法则来求极限
16、求数列极限的时候可以将其转化为定积分来求。
17、利用函数有界原理证明极限的存在性,利用数列的逆推求极限
(1)、单调有界数列必有极限
(2)、单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限。
18、直接使用1求导的定义求极限
当题目中告诉你F(0)=0,且F(x)的导数为0时,就暗示你一定要用导数的定义:、(1)、设函数y=f(x)在x0的某领域内有定义,当自变量在x在x0处取得增量的他x 时,相应的函数取得增量 的他y=f(的他x+x0)-f(x0)。如果 的他y与 的他x之比的极限存在,则称函数y=f(x)在x0处可导并称这个极限为这个函数的导数。
(2)、在某点处可导的充分必要条件是左右导数都存在且相等。
19、数列极限转化为函数极限求解
数列极限中是n趋近,面对数列极限时,先要转化为x趋近的情况下的极限,当然n趋近是x趋近的一种形式而已,是必要条件。(还有数列的n当然是趋近于正无穷的)