第一篇:在实践中对小学数学思想方法进行渗透的一点体会
在实践中对小学数学思想方法进行渗透的一点体会
抚顺市新华朝鲜族小学尹春花
数学领域中的知识博大精深,学之不尽。小学生们所学到的只是数学基础知识中的最基本的东西。因此,学校教学要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。在小学数学教学中,所采用的思想方法有很多,例如对应思想方法、猜想验证思想方法、转化思想方法、数形结合思想方法等等。下面就以自己的教学实践为例谈谈在实际教学中渗透这些数学思想方法的一些粗浅做法。
一、数形结合的思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
在小学一年级中,刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“5的认识”时,先出示主题图,问学生图中有些什么?学生从中数出5朵小花,5只小鸟,5个气球。从而感知5的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由5根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解5的实际意义;第三层次是利用黑板进行画5个圆,5个正方形,5个三角形等特定图形来代表5,从而慢慢抽象至数字5。这样从实
物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透吧!
再如“植树问题”的数学课,我觉得在这节课中,如果利用数形结合的思想进行教学的话,会起到事半功倍的效果。本节课的难点在于三种不同情况的种植方法直接影响它的种植结果,即两头都种,两头都不种和一头种一头不种。但学生很难理解这些字面意思,更难记忆这些,而通过画线段图的方式让学生亲眼看到这三种不同情况的实际意义,就让学生在图示的直观作用下很快能理解这三种不同情况所代表的不同含义了。也就能很好的应用到解题中去。
二、对应思想方法
利用数量间的对应关系来思考数学问题,就是对应思想。集合、涵数、坐标等问题都以这一思想为基础。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。
在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。
例如:水果店上午卖出橘子6筐,下午又卖出同样的橘子8筐,比上午多卖100元,每筐橘子多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。
三、转化思想方法 转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。
例如:上“整
十、整百相乘”一课时,先让学生观察,然后问一问,能不能把整十相乘转化为我们以前所学过的几乘与几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相乘。我想这是不
是再渗透转化思想方法呢。
四、猜想验证思想方法
猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。
例如:上“乘法分配律”一课时,我设计了以下几个环节:
1、出示例题:(1)(4+2)×25(2)4×25+2×25学生独自计算结果。
2、讨论两个算式的异同点。
3、根据自己的发现举出类似的例子,并加以计算。
4、验证后,总结归律。
这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。
第二篇:小学数学教学中如何渗透数学思想方法
小学数学教学中如何渗透数学思想方法
摘要:数学思想是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果。《数学课程标准(2011版)》指出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。从“双基”扩展为“四基”,凸显数学思想在义务教育过程中的重要地位。笔者从实践层面谈在教学中如何渗透数学思想。
关键词:小学数学;渗透;数学思想方法
一、在教学预设时精心挖掘教材中的数学思想
课堂教学活动,它是复杂和多变的,受到多个因素的影响,所以精心的预设,是上好一节课的必要条件。课前,教师既要全面了解学生的学情,又要深入钻研教材,二次开发使用教材资源,挖掘教材中蕴含的数学思想,进行有效的教学预设。如:人教版义务教育课程三年级下册第八单元《解决问题》的例1《用连乘两步解决问题》的教学设计。例1出示主题图,图中突显一个大方阵。每行有8人,共10行。两旁又显示两个不完整的方阵,每个方阵只显示一列半。备课时,笔者关注到它不是3个完整的方阵,可这幅图到底是什么意思?在备课中苦苦挣扎,苦苦思索,如果只是将它理解为一个方阵来教,未必不可,可总感觉在文本解读上,缺失了一些深度。再一次读图,这个图在美术上叫二方延续,不能只看成一个方阵,也不能单纯地看成三个方阵,这里蕴含了类似于“极限思想”,(因为人数是有限的,但可以比三个方阵多得多)有很多方阵,可以让同学们发挥想象,是一个开放性的主题图,方阵的个数并不唯一。但为什么在图的结构安排上,中间这个方阵放大而且清晰地呈现,而旁边的方阵是不完整的。最后理解为教材设计的意图,是为了让同学们明白,只要先求出一个方阵的人数,其余无论有几个方阵,用一个方阵的人数去乘几个方阵,就可以很顺利地解决。于是,教师预设:同学们,看到这幅图,你想提什么问题?生答后。师又问,那么你能马上解决哪个问题?(可以知道哪一部分的人数?)用什么方法计算?接着问,为什么主题图中间的这个方阵既完整又清楚地显示,而且可以直接求出这个方阵的人数,而其它两个方阵只显示一列多的人数,这表示什么?通过问题的精心预设,学生在解决问题的过程中,思维深度得到了进一步的提升。教材中蕴含的类似于“极限思想”也在不知不觉地渗透给学生。
二、在授课中悄然渗透数学思想
数学思想方法其实就是蕴含在数学知识之中,尤其是蕴含于每一个数学知识的形成过程中。当学生在学习每一个数学新知时,教师要尽可能提炼出蕴含其中的数学思想方法。要让学生充分体验数学思想,要引导学生对解决问题的策略和依据进行不断的思考、猜想、论证,并通过合作交流,实践探究,优化方法,去感悟数学思想方法。例:《平行四边形的面积》一课,让学生围绕如何将平行四边形转化为已学过的图形这个问题独立思考、合作探究、猜想、论证。学生利用教师已经准备好的相关的平行四边形纸片材料,采取小组合作的方式进行探究活动。有的小组将它沿着平行四边形正中间的高剪下,转化为两个完全相等的梯形,再拼成一个长方形,从而根据长方形的公式推导出平行四边形的公式。也有的小组同学把它从一个角沿着高剪开,剪成一个三角形和一个梯形,再拼成一个长方形。还有的小组发现拼成的这个图形是一个正方形。最后根据已学过的正方形的面积公式推出平行四边形的面积公式。
三、在拓展运用中提炼数学思想
除新知学习外,我们还应把“提炼数学思想”的重要阵地放在练习课和复习课上。这就要求教师在练习课堂教学过程中一定要把握好时机,既不能蜻蜓点水,也不能为“渗”而“渗”,应该精心设计好每一个练习。要以促进学生的“悟”为目的,有效地预设思想、体验思想、内化思想和提升思想,最终促进学生自我学习能力的内化提升。二年级下册《观察、猜测、推理、验证》单元,新课结束后,笔者设计这样一道练习:小林、小英、小伟三位选手参加学校100米决赛。小林:我不是最慢的,小英说:我不是最快的。问题:你能判断比赛结果吗?
生:不能。因为小林不是最慢的,只能说明,他不是第三名,那可能是第一名或第二名;小英说不是最快的,那可能是第二名或第三名,这样重复了第二名。推不出来。
师:那要再增加一个什么条件,才能推出比赛结果。
生1:小伟比小林快。这样就可以推出第一名是小伟,第二名是小林,第三名是小英。
师:你们觉得,这位同学说得对吗?(生思考后,同意这位同学的观点。)
生2:还可以这样补充:小林比小伟快,小林第一名,小伟第二名,小英第三名。
生3:我不同意,因为小伟和小英并不清楚谁快。所以这个条件不行。
生4:小英比小伟快。说明小林第一名,小英第二名,小伟第三名。
生5:我同意。(全班没有不同意见。)
生6:那还可以说小林比小英快。结果小林第一名,小英第二名,小伟第三名。
生7:不行,小林第二名,小英第三名时,小林比小英快,小林第一名,小英第二名,小林也比小英快,这个条件不行。不知道和小伟的关系,不能推出比赛结果。
……
这样一道开放式的题型,学生的思维活跃了,充分地感受到数学推理思想在拓展练习中有着重要的作用。
总之,数学思想方法是数学知识的灵魂,是解决数学问题的指导思想和基本策略。数学教学过程中,应把数学思想方法的渗透做到润物细无声,而进行数学思想方法的渗透教学,应该是在启发学生进行思维的过程中通过一定的策略循序渐进地让学生获取。
第三篇:浅谈在教学过程中如何渗透数学思想方法
浅谈在教学过程中如何渗透数学思想方法
我们知道:问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立,数学规律的发展,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的渗透。数学思想方法是解决数学问题所采用的方法。它是从数学教材中抽象概括出来的,是数学知识的精髓,是知识转化为能力、理论应用于实践的桥梁。在人们的数学研究中,最有用的不仅是数学知识,更重要的是数学思想方法。因此如何向学生渗透数学思想方法是我们教师上好课的关键。下面我针对在教学过程中如何渗透数学思想方法谈谈自己的看法。
一、在“教师的导课”中渗透数学思想方法。
在教学过程中教师为了向学生渗透学习该教学内容的必要性的数学思想方法,经常创设与教学有关的情境。如:在教学“分数的初步认识”时,教师首先拿出4个苹果平均分给2个同学,每人分得几个?然后再拿出2个苹果平均分给2个同学,每人分得几个?最后再拿出1个苹果平均分给2个同学,每人分得几个?这时孩子会提出1个苹果平均分给2个同学每人分得“半个”。这时教师紧跟着提出怎么表示“半个”呢?这样简单而易懂的情境向学生渗透了学习分数的必要性的数学思想方法,同时还渗透了数学来源于生活。
二、在“学生的探索”中渗透数学思想方法。
在“学生的探索”中渗透的数学思想方法有很多,针对不同的教学内容渗透不同的数学思想方法。常见的数学思想方法有:符号化的数学思想方法、数形结合的数学思想方法、化归的数学思想方法、分类的数学思想方法和统计的数学思想方法。下面我针对这几种数学思想方法举例说明。
1、符号化的数学思想方法。
用符号化的语言来描述教学内容,这是符号化思想。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。如:我在教学“比较大小”一课时,为了让学生充分认识大于号和小于号,我伸出左手的两根手指食指和中指表示出“<”,这是小于号。因为从左到右张开的嘴越来越大,说明左边小于右边。再用同样的方法认识大于号。直观形象的引导学生掌握了大于号和小于号的符号,从中渗透了符号化数学思想方法。
2、数形结合的数学思想方法。
数和形是数学教学研究的两个主要对象,数不离形,形不离数,一般会把抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。例如我在教学这样的习题时:丁芳家、小刚家、书城都在同一条路上。丁芳家离书城2000米,小刚家离书城1200米,小刚和丁芳相距多少米?针对这样的问题教师只要引导孩子画出线段图,孩子们会马上理解题的含义。
3、化归的数学思想方法。
化归思想能增长学生的智慧和创造能力,是数学中最普遍使用的一种思想方法。简单的说就是把问题化难为易、化生为熟、化繁为简、化整为零、化曲为直。这样的数学思想方法在计算教学中应用最频繁。例如我在教学“两位数加减两位数的口算”时,对于38+57学生是这样做的,把38分成30和8,把57分成50和7,30+50=80,8+7=15,80+15=95。
4、分类的数学思想方法。
分类思想方法不是数学独有的思想方法,它在各个学科体现的都很多。在数学中分类思想方法体现的是对数学对象的分类及其分类的标准。例如青岛版教材一年级上册第二单元妈妈的小帮手中《分类》这一课时,本节教材让孩子了解某些物体可以根据不同的标准分成几类。
5、统计的数学思想方法。
统计的思想方法是把一些凌乱的东西经过整理能清楚分辨的过程。在青岛版教材中每一册都有统计的内容,让孩子从小培养统计的意识。
三、在“师生的总结”中渗透数学思想方法。
师生的总结是教学过程中必不可缺少的一个重要环节。它是揭示知识之间的内在联系和归纳知识中蕴含的数学思想方法的关键。师生的总结是对知识进行深化、精炼和概括的过程。在这个过程中不仅为学生提供了发展和提高能力的机会,而且还渗透了数学思想方法。
四、在“学生的习题巩固”中渗透数学思想方法。
数学来源于生活并应用于生活。前面的探索研究为我们提供了理论依据,怎样应用于实践,还需要我们的习题巩固。如果说探索是重点,应用于实践是重中之重。在这个环节中是利用我们的数学思想方法,解决现实问题。
总之,在教学过程中,教师必须重视数学思想方法的挖掘、提炼和研究,加强数学思想方法的引导,有意识的把数学教学过程转化为数学思维活动的过程。
第四篇:初一数学教学如何渗透数学思想方法
初一数学教学如何渗透数学思想方法
九年义务教育初中数学大纲指出:“初中数学的基础知识主要是初中代数、几何中概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。” 这就明确地告诉我们,数学知识已不再被狭义地理解为大纲和教材所规定的教学内容,而是内容和思想方法的有机结合。数学思想和方法是数学基础知识的重要组成部分,因此,在初中数学教学中,教者必须认真挖掘含在数学知识体系之中的数学思想和方法,坚持每一李课都自觉地向学生渗透基本的数学思想和方法,使学生学习数学知识的同时,领悟数学思想和方法,提高数学素质,养成良好的思维品质,数学思想是对数学知识和方法的本质认识,任何数学事实的理解、数学概念的掌握、数学方法的应用和数学理论的建立,无一不是数学思想的体现和应用,所有这些都说明,培养学生的数学思想必须从基础抓起,从初一阶段就开始对学生进行数学思想和方法的早期渗透。
在初一数学教学中进行数学思想的早期渗透,不仅是必要的,而且是完全可能的。这是因为,第一,数学思想是贯穿于整个数学教材之中的,只要我们认真地钻研教材,我们就能把溶于数学教材之中的数学思想凝聚起来明白地渗透给学生,数学思想也是处理抽象事物时的自然想法。第二,从心理学上关于儿童的发展理论可以知道,初一学生已经具备了和抽象事物打交道的能力,只要我们讲解得当,数学思想是容易为学生所接受的。那么,在初一阶段应该着重渗透哪些数学思想呢?我认为,它至少要包括以下三个数学思想,即符号表示思想、分类讨论思想和化归的思想。
㈠符号表示的思想。这是数学中最基本的思想,数学的抽象是从引进数学符号表示数学对象开始的,因此,把数学事实符号化就成为学习现代数学必须首先掌握的技能之一。在初一阶段,由于教材安排了大量的有关字母表示数、用代数式表示数量关系等内容,这我们向学生渗透符号表示思想提供了方便。为了让学生顺利地完成这个由具体向抽象转变的第一步,在渗透中应注意以下两点:第一,强化对符号表示思想的自然性和优越性的认识。使学生明白,算术能解决的问题是十分有限的,还有大量问题算术不易解决甚至不能解决,为了使问题解决且解决的简捷,我们自然希望寻求比算术更好的办法,引进数学符号表示数学对象就是实现这种想法的第一步,它的优越性是十分明显的,能使数学事实的表示更加简单了、更便函于书写和研究,更富有概括意义。例如,用㈡㈢
第五篇:如何加强初中数学思想方法的渗透
作业二:如何加强初中数学思想方法的渗透
1.把握数学思想方法的层次性根据‘.大纲”精神.在初中要求‘’了解”的数学思想有转化、分类讨论、数形结合、类比等要求“了解”的方法有分类法、类比垮、反证法;要求‘理解”或“会应用”的方法有待定系数法、消兀法、降次法、配方法、换元法、图象法。这吸“了解”、“理解”、“会运用”是教学要求的具体尺子.随便提高或降低都会给这一基础知识的教学带来灾难
2.加强知识的发生过程.适时渗透数学思想方法莱布尼兹有一句名言:“没有什」么比看到发明的源泉(过程)比发明本身吏重要了”。数学教学不应是数学活动结果的教学.而应是数学活动〔思维活动)过程的教学数学知识的发生过程.实际上也是数学思想方法的发生过程。我们在教学中不仅要告诉学且有哪些数学思想和力一法.它们各有什么用.而且更重要的是向学生展现概念的形成过程、结论的推导过程、方法的思考过程、问题的被发现过程、思路的探索过程、规律的被揭示过程等。否则学生遇到新问题时,尽管头脑中也知道要在数学思想方法的指导下解决,但仍然不知从何处人手
3.既要突出重点.又要逐步渗透在教学过程的不同阶段,对数学思想方法的教学的侧重点应有所不同。在低年级介绍较低层次,在高年级介绍较高层次;新授课阶段介绍低层次的,复习巩固阶段介绍较高层次的。下面以二元一次方程组的解法的教学为例加以说明:开始讲代入消元法和加减消元法,让学生明确两者虽然不同,但作用却是一致的—都把二元一次方程组化为一元一次方程,两者统一称为消元法。消元的思想是解二元一次方程组的基本;在复习阶段则让学生理解消元思想实施的结果是化二元为一元,即化繁为简、化陌生为熟悉,为彻底解决问题铺平道路,从而把消元的思想上升为化简和转化的高层次的数学思想。
4.努力做到掌握数学方法和渗透数学思想的有机结合数学教学本身就是思维活动过程的教学,引导学生把握数学方法,按照思维活动的规律,渗透合理的数学思想,才能提高和发展学生的思维能力。具体可从两个方面人手:一方面,通过数学思想的渗透,启发、帮助学生发现和认识教科书中阐述的数学方法,使得数学不只是单纯的灌输,而是使这些方法成为分析问题和解决问题的有力工具,做到自然而然地掌握和运用;另一方面,通过对数学方法的掌握,进一步了解隐含于其中的数学思想,认识到具体事物的本质,从而逐步掌握科学的思想方法。以上这两个方面的交替发展,还可以从新旧知识的联系,转化、发展等方面引发学生的思维活动,使未知问题转化为已知问题而得到解决。这就要求教学过程中必须根据问题的具体情况及时创设思维情境,如暗示、引导、分析、揭示等,这些方法会使学生的思维豁然开朗,留下深刻的印象,并且饶有趣味。例如,计算有理数乘除混合运算时,把除以a变为乘以l/a,使两种运算转化为一种运算,这是多种运算向统一运算转化的体现。在二元、三元一次方程组的解法教学中,消元的思想就成为转化的指导思想,而代入法、加减法是这一指导思想产生的必然方法。当然.加强初中数学思想方法的渗透,并不是靠对几个范例的分析就能解决的,而要靠在整个教学过程中站在方法论的高度讲出学生在课本里的字里行间看不出的奇珍异宝。