基本初等函数的极限(全文5篇)

时间:2019-05-12 05:24:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基本初等函数的极限》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基本初等函数的极限》。

第一篇:基本初等函数的极限

基本初等函数在其定义域内极限值等于函数值.cc 常函数 yc limx

指数函数 yaxa0,a1

a1 limax limax0;0a1 limax0 limax xxxx对数函数 ylogaxa0,a1

logax;0a1limlogax,limlogax a1limlogax,limxx0xx0

三角函数

ytanx lim

xk2tanx limxk2tanx

ycotx limcotx limcotx xkxk

反三角函数

xlimarctanx2arctanx;limarccotx0 limarccotxxlimxx2

幂函数 yx

x2定义域为R,例如yx2,limx

1/21/21/2limxlimx0(定义域内的点)0,定义域为,例如,yxxx0

x10,limx1 定义域为,00,,例如yx1,limxx0

x1/20,limx1/2 定义域为0,,例如yx1/2,xlimx0

注:不管的取值,定义域都包括0,

0,limx,limx0;0,limx0,limx xx0xx0

第二篇:基本初等函数

基本初等函数

一、考点分析

函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。

考点:函数的定义域和值域,了解并简单应用分段函数,函数的单调性、最值及几何意义、奇偶性,会利用函数图像表示并分析函数的性质;理解指数函数、对数函数的概念以及运算

性质,会画图像并且了解相关性质。了解幂函数的概念,结合图像了解变化情况。

易错点:容易遗忘判断单调性以及奇偶性的方法;容易遗忘指数、对数函数的图像性质,以及相关的运算性质。

难点:函数的单调性、奇偶性,指数、对数函数的图像性质以及运算性质。

二、知识分析

1.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)

2.求函数的定义域有哪些常见类型?

例:函数

ylgx3的定义域是答:0,233,4 2,3.如何求复合函数的定义域?

如:函数f(x)的定义域是a,b,ba0,则函数F(x)f(x)f(x)的定义域是_____________。答:a,a

4.求一个函数的解析式数时,注明函数的定义域了吗?

如:f

令texx,求f(x)t0,∴xt21,∴f(t)et

x2121t21,∴f(x)ex21x0

5.如何用定义证明函数的单调性?(取值、作差、判正负)

如何判断复合函数的单调性?,u(x)(内层),则yf(x) yf(u)(外层)

当内、外层函数单调性相同时,f

(x)为增函数,否则f(x)为减函数

如:求ylog1x22x的单调区间。

设ux2x,由u0,则0x2且log1u,ux11,如图



当x(0,1]时,u,又log1u,∴y

当x[1,2)时,u,又log1u,∴y

∴……)

6.如何利用导数判断函数的单调性?

在区间a,b内,若总有f'(x)0,则f(x)为增函数。(在个别点上导数等于零,不影响函数的单调性),反之也对,若f'(x)0呢?

如:已知a0,函数f(x)x3ax在1,上是单调增函数,则a的最大值是 A.0

B.1C.2D.

3x0令f'(x)3xa3x,则x

x,

由已知f(x)在1,1,即a3,∴a的最大值为3 7.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)

若f(x)f(x)总成立f(x)为奇函数函数图像关于原点对称 若f(x)f(x)总成立f(x)为偶函数函数图像关于y轴对称 注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

(2)若f(x)是奇函数且定义域中有原点,则f(0)0

a·2xa

2如:若f(x)为奇函数,则实数a

2x

1a·20a2

0,∴a1 ∵f(x)为奇函数,xR,又0R,∴f(0)0,即0

212x

又如:f(x)为定义在(11),求f(x)在,上的奇函数,当x(0,1)时,f(x)x

41(11),上的解析式。

2x

令x10,,则x01,,f(x)x

412x2x

又f(x)为奇函数,∴f(x)x

4114x

2x

0)4x1,x(1,

又f(0)0,∴f(x)0,x0

2x

x,x0,141

8.你熟悉周期函数的定义吗?

(T0)若存在实数T,在定义域内总有fxTf(x),则f(x)为周期函数,T是

一个周期。如:若fxaf(x),则答: T2a为f(x)的一个周期。

又如:若f(x)图像有两条对称轴xa,xb即f(bx)f(bx),f(ax)f(ax),则f(x)是周期函数,2|ab|为一个周期

如图:

9.你掌握常用的图象变换了吗?

f(x)与f(x)的图像关于y轴对称 f(x)与f(x)的图像关于x轴对称 f(x)与f(x)的图像关于原点对称 将yf(x)图像右移a(a0)个单位

左移a(a0)个单位

yf(xa)上移b(b0)个单位yf(xa)b

 下移b(b0)个单位

yf(xa)yf(xa)b

注意如下“翻折”变换:f(x)|f(x)|,f(x)f(|x|)

如:f(x)log2x1y=log2x

作出y|log2x1|及ylog2|x1|的图像

10.你熟练掌握常用函数的图象和性质了吗?

(1)一次函数:ykxbk0(2)反比例函数:y

kk

k0推广为ybk0是中心O'(a,b)的双曲线。

xxa

b4acb2

(3)二次函数yaxbxca0ax的图像为抛物线 

2a4a

b4acb2bx顶点坐标为,对称轴 2a4a2a

开口方向:a0,向上,函数ymin

4acb2

4a

a0,向下,ymax

4acb2

4a

应用:①“三个二次”(二次函数、二次方程、二次不

等式)的关系——二次方程axbxc0,0时,两根x1、x2为二次函数

也是二次不等式axbxc0(0)解集的端yax2bxc的图像与x轴的两个交点,点值。

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。④一元二次方程根的分布问题。

如:二次方程axbxc0的两根都大于

0

bkk,一根大于k,一根小于kf(k)0

2af(k)0

(4)指数函数:ya

x

a0,a1

ax(a>1)

(5)对数函数:ylogaxa0,a1

由图象记性质!(注意底数的限定!)(6)“对勾函数”yx

(a

0),k

k0 x

1ap

11.你在基本运算上常出现错误吗?

指数运算:a01(a0),a

p

aa

0),a

mn

mn

a0)

对数运算:logaM·NlogaMlogaNM0,N0

loga

M

1logaMlogaN,logalogaM Nn

logax

对数恒等式:a

x;对数换底公式:logab

logcbn

logambnlogab logcam

12.如何解抽象函数问题?(赋值法、结构变换法)

如:(1)xR,f(x)满足f(xy)f(x)f(y),证明f(x)为奇函数。先令xy0f(0)0,再令yx,……

(2)xR,f(x)满足f(xy)f(x)f(y),证明f(x)为偶函数。先令xytf[(t)(t)]f(tt),∴f(t)f(t)f(t)f(t),∴f(t)f(t)……

(3)证明单调性:f(x2)fx2x1x2…… 13.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),换元法,均值定理法,利用函数单调性法,导数法等。)

三、习题

第三篇:基本初等函数教学反思

初中我们学习了一次函数、二次函数、反比例函数三类初等函数,必修一中我们又要学习另外三种初等函数----指数函数、对数函数、幂函数。在前两章中我们已经学习了函数的概念、函数的基本性质——单调性、奇偶性,我在教学学过程中就将这些性质和初中学习的函数进行结合,分析讨论这些函数的相关性质。指数函数、对数函数、幂函数的研究也是以这些基本性质为出发点,来进行研究的。实质是对函数性质研究的延续。我主要谈一下我在教学对数函数的图像和性质方面的感受。

指数函数和对数函数间有着密不可分的关系,它们的性质有好多的相似指处,因此在教学过程中,我比较注重培养学生运用对比、类比的数学思想去学习对数函数函数。;同时从数形结合的角度去感性认识对数函数的性质,这样可以把函数的抽象性以更为直观的形式表现出来;在教学过程中,我还适时运用肢体语言让同学们感知函数图像,从而比较自然地使学生能尽快记住函数图像的样子,有了图像性质全部写在图上。数形结合这种重要的数学思想贯穿整个高中数学,应该逐渐使学生养成运用意识。学生对函数性质的把握还是不错的。

但是,对于新知的理解和接受需要一个过程,就像我们人与人之间的交往一样,新朋友的熟悉需要一个认识的过程。由于课程时间安排比较紧,我们不可能停下来认识,一个学期或一个学年后发现好多学生已经将对数函数、指数函数的性质忘记了,碰到了和陌生的一样。我觉得这和我们平时的月考内容安排有关系,我们的月考内容应该是之前的全部学习内容,非本学期的前面的知识要占一定比例,但是我们的安排都是本月学习什么只考什么,前面的根本不涉及。这样前面的东西就慢慢忘了。我们应该在这方面改进一下。

第四篇:函数极限

习题

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf(x)≠ A.xx0

3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0

4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= A,证明limf(xxx01)= A x

8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时)g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,其中n≥2为正整数.6.证明limax=1(0

x0

7.设limf(x)=A, limg(x)=B.xx0

xx0

(1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么?

(2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f(x0-0)=

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

A x

第五篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

和,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念(3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一)时函数的极限:

《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证(类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域

《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th 4 若使,证 设

和都有 =

(现证对 都存在, 且存在点 的空心邻域),有

註: 若在Th 4的条件中, 改“ 就有

5.6.以

迫敛性:

”为“ 举例说明.”, 未必

四则运算性质:(只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和()§ 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限

为例.一.Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

且的某空心邻域

内有定义.则极限都存在且相等.(证)

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。一.

(证)(同理有)

例1

例2.例3

例4

例5 证明极限 不存在.二.证 对

例6

特别当 等.例7

例8

《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)

几组常用等价无穷小:(见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习题 课(2学时)

一、理论概述:

《数学分析》教案

第三章 函数极限

xbl

例7.求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.例8 求是否存在.和.并说明极限

解;

可见极限 不存在.--32

下载基本初等函数的极限(全文5篇)word格式文档
下载基本初等函数的极限(全文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数极限

    数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际......

    函数与基本初等函数2.6幂函数(作业)

    响水二中高三数学(理)一轮复习作业 第二编 函数与基本初等函数Ⅰ主备人张灵芝总第9期§2.6幂函数 一、填空题 1.设α∈{-1,1,12α ,3},则使函数y=x定义域为R且为奇函数的所有......

    高一数学必修一基本初等函数教案

    状元坊专用 基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n次方等于a(n1,且nN),则这个数称a的n次方根。即若xna,则x称a的n次方根n1且nN), 1)当n为......

    函数极限证明

    函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2......

    1-2函数极限

    高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限......

    函数极限概念

    一. 函数极限的概念 1.x趋于时函数的极限 设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当......

    2.3函数极限

    高三极限同步练习3(函数的极限) 求第一类函数的极限 例1、讨论下列函数当x,x,x时的极限: 1(1)f(x)1 2 (2)f(x)x1 x1 (x0)2(3)h(x)x2 x0)x1求函数的左右极限 例2、讨论下列函数在点x1处的......

    2018考研高等数学基本定理:函数与极限部分

    凯程考研辅导班,中国最权威的考研辅导机构 2018考研高等数学基本定理:函数与极限部分 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要......