第十六章
二次根式
测试1
二次根式
学习要求
掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.
课堂学习检验
一、填空题
1.表示二次根式的条件是______.
2.当x______时,有意义,当x______时,有意义.
3.若无意义,则x的取值范围是______.
4.直接写出下列各式的结果:
(1)=_______;
(2)_______;
(3)_______;
(4)_______;
(5)_______;(6)
_______.
二、选择题
5.下列计算正确的有().
①
②
③
④
A.①、②
B.③、④
C.①、③
D.②、④
6.下列各式中一定是二次根式的是().
A.
B.
C.
D.
7.当x=2时,下列各式中,没有意义的是().
A.
B.
C.
D.
8.已知那么a的取值范围是().
A.
B.
C.
D.
三、解答题
9.当x为何值时,下列式子有意义?
(1)
(2)
(3)
(4)
10.计算下列各式:
(1)
(2)
(3)
(4)
综合、运用、诊断
一、填空题
11.表示二次根式的条件是______.
12.使有意义的x的取值范围是______.
13.已知,则xy的平方根为______.
14.当x=-2时,=________.
二、选择题
15.下列各式中,x的取值范围是x>2的是().
A.
B.
C.
D.
16.若,则x-y的值是().
A.-7
B.-5
C.3
D.7
三、解答题
17.计算下列各式:
(1)
(2)
(3)
(4)
18.当a=2,b=-1,c=-1时,求代数式的值.
拓广、探究、思考
19.已知数a,b,c在数轴上的位置如图所示:
化简:的结果是:______________________.
20.已知△ABC的三边长a,b,c均为整数,且a和b满足试求△ABC的c边的长.
测试2
二次根式的乘除(一)
学习要求
会进行二次根式的乘法运算,能对二次根式进行化简.
课堂学习检测
一、填空题
1.如果成立,x,y必须满足条件______.
2.计算:(1)_________;(2)__________;
(3)___________.
3.化简:(1)______;(2)
______;(3)______.
二、选择题
4.下列计算正确的是().
A.
B.
C.
D.
5.如果,那么().
A.x≥0
B.x≥3
C.0≤x≤3
D.x为任意实数
6.当x=-3时,的值是().
A.±3
B.3
C.-3
D.9
三、解答题
7.计算:(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
8.已知三角形一边长为,这条边上的高为,求该三角形的面积.
综合、运用、诊断
一、填空题
9.定义运算“@”的运算法则为:则(2@6)@6=______.
10.已知矩形的长为,宽为,则面积为______cm2.
11.比较大小:(1)_____;(2)______;(3)-_______-.
二、选择题
12.若成立,则a,b满足的条件是().
A.a<0且b>0
B.a≤0且b≥0
C.a<0且b≥0
D.a,b异号
13.把根号外的因式移进根号内,结果等于().
A.
B.
C.
D.
三、解答题
14.计算:(1)_______;
(2)_______;
(3)_______;
(4)_______.
15.若(x-y+2)2与互为相反数,求(x+y)x的值.
拓广、探究、思考
16.化简:(1)________;
(2)_________.
测试3
二次根式的乘除(二)
学习要求
会进行二次根式的除法运算,能把二次根式化成最简二次根式.
课堂学习检测
一、填空题
1.把下列各式化成最简二次根式:
(1)______;(2)______;(3)______;(4)______;
(5)______;(6)______;(7)______;(8)______.
2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:
与
(1)与______;
(2)与______;
(3)与______;
(4)与______;
(5)与______.
二、选择题
3.成立的条件是().
A.x<1且x≠0
B.x>0且x≠1
C.0<x≤1
D.0<x<1
4.下列计算不正确的是().
A.
B.
C.
D.
5.把化成最简二次根式为().
A.
B.
C.
D.
三、计算题
6.(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
综合、运用、诊断
一、填空题
7.化简二次根式:(1)________(2)_________(3)_________
8.计算下列各式,使得结果的分母中不含有二次根式:
(1)_______(2)_________(3)__________(4)__________
9.已知则______;_________.(结果精确到0.001)
二、选择题
10.已知,则a与b的关系为().
A.a=b
B.ab=1
C.a=-b
D.ab=-1
11.下列各式中,最简二次根式是().
A.
B.
C.
D.
三、解答题
12.计算:(1)
(2)
(3)
13.当时,求和xy2+x2y的值.
拓广、探究、思考
14.观察规律:……并求值.
(1)_______;(2)_______;(3)_______.
15.试探究与a之间的关系.
测试4
二次根式的加减(一)
学习要求
掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.
课堂学习检测
一、填空题
1.下列二次根式化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______.
2.计算:(1)________;
(2)__________.
二、选择题
3.化简后,与的被开方数相同的二次根式是().
A.
B.
C.
D.
4.下列说法正确的是().
A.被开方数相同的二次根式可以合并
B.与可以合并
C.只有根指数为2的根式才能合并
D.与不能合并
5.下列计算,正确的是().
A.
B.
C.
D.
三、计算题
6.7.
8.9.
10.11.
综合、运用、诊断
一、填空题
12.已知二次根式与是同类二次根式,(a+b)a的值是______.
13.与无法合并,这种说法是______的.(填“正确”或“错误”)
二、选择题
14.在下列二次根式中,与是同类二次根式的是().
A.
B.
C.
D.
三、计算题
15.16.
17.18.
四、解答题
19.化简求值:,其中,.
20.当时,求代数式x2-4x+2的值.
拓广、探究、思考
21.探究下面的问题:
(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.
①()
②()
③()
④()
(2)你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.
(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.
测试5
二次根式的加减(二)
学习要求
会进行二次根式的混合运算,能够运用乘法公式简化运算.
课堂学习检测
一、填空题
1.当a=______时,最简二次根式与可以合并.
2.若,那么a+b=______,ab=______.
3.合并二次根式:(1)________;(2)________.
二、选择题
4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是().
A.与
B与
C.与
D.与
5.下列计算正确的是().
A.
B.
C.
D.
6.等于().
A.7
B.
C.1
D.
三、计算题(能简算的要简算)
7.8.
9.10.
11.12.
综合、运用、诊断
一、填空题
13.(1)规定运算:(a*b)=|a-b|,其中a,b为实数,则_______.
(2)设,且b是a的小数部分,则________.
二、选择题
14.与的关系是().
A.互为倒数
B.互为相反数
C.相等
D.乘积是有理式
15.下列计算正确的是().
A.
B.
C.
D.
三、解答题
16.17.
18.19.
四、解答题
20.已知求(1)x2-xy+y2;(2)x3y+xy3的值.
21.已知,求的值.
拓广、探究、思考
22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:与,与互为有理化因式.
试写下列各式的有理化因式:
(1)与______;
(2)与______;
(3)与______;
(4)与______;
(5)与______;
(6)与______.
23.已知求.(精确到0.01)
答案与提示
第十六章
二次根式
测试1
1.a≥-1.2.<1,>-3.3.x<-2.
4.(1)7;
(2)7;
(3)7;
(4)-7;
(5)0.7;
(6)49.
5.C.
6.B.
7.D.
8.D.
9.(1)x≤1;(2)x=0;(3)x是任意实数;(4)x≤1且x≠-2.
10.(1)18;(2)a2+1;(3)
(4)6.
11.x≤0.
12.x≥0且
13.±1.
14.0.
15.B.
16.D.
17.(1)π-3.14;(2)-9;(3)
(4)36.
18.或1.
19.0.
20.提示:a=2,b=3,于是1 测试2 1.x≥0且y≥0.2.(1) (2)24;(3)-0.18. 3.(1)42;(2)0.45;(3) 4.B. 5.B. 6.B. 7.(1) (2)45; (3)24; (4) (5) (6) (7)49; (8)12; (9) 8.9. 10.. 11.(1)>;(2)>;(3)<. 12.B. 13.D. 14.(1) (2) (3) (4)9. 15.1. 16.(1) (2) 测试3 1.(1) (2) (3) (4) (5) (6) (7) (8). 2.3.C. 4.C. 5.C. 6.7. 8.9.0.577,5.196. 10.A. 11.C. 12.13. 14.15.当a≥0时,;当a<0时,而无意义. 测试4 1.2.(1) 3.C. 4.A. 5.C. 6.7. 8.9. 10.11. 12.1. 13.错误. 14.C. 15.16. 17.18.0. 19.原式代入得2. 20.1. 21.(1)都画“√”;(2)(n≥2,且n为整数); (3)证明: 测试5 1.6. 2.3.(1) (2) 4.D. 5.D. 6.B. 7.8. 9.10. 11.12. 13.(1)3;(2) 14.B. 15.D. 16.17.2. 18.19.(可以按整式乘法,也可以按因式分解法). 20.(1)9; (2)10. 21.4. 22.(1); (2); (3); (4); (5); (6)(答案)不唯一. 23.约7.70. 第十六章 二次根式全章测试 一、填空题 1.已知有意义,则在平面直角坐标系中,点P(m,n)位于第______象限. 2.的相反数是______,绝对值是______. 3.若,则______. 4.已知直角三角形的两条直角边长分别为5和,那么这个三角形的周长为______. 5.当时,代数式的值为______. 二、选择题 6.当a<2时,式子中,有意义的有(). A.1个 B.2个 C.3个 D.4个 7.下列各式的计算中,正确的是(). A. B. C. D. 8.若(x+2)2=2,则x等于(). A. B. C. D. 9.a,b两数满足b<0|a|,则下列各式中,有意义的是(). A. B. C. D. 10.已知A点坐标为点B在直线y=-x上运动,当线段AB最短时,B点坐标(). A.(0,0) B. C.(1,-1) D. 三、计算题 11.12. 13.14. 15.16. 四、解答题 17.已知a是2的算术平方根,求的正整数解. 18.已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD,求梯形ABCD的周长. 附加题 19.先观察下列等式,再回答问题. ① ② ③ (1)请根据上面三个等式提供的信息,猜想的结果; (2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式. 20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算). 答案与提示 第十六章 二次根式全章测试 1.三. 2.3. 4.5. 6.B. 7.C. 8.C. 9.C. 10.B. 11.12. 13.14. 15.16.0. 17.x<3;正整数解为1,2. 18.周长为 19.(1) (2) 20.两种:(1)拼成6×1,对角线 (2)拼成2×3,对角线(cm).