第一篇:【备课参考】华师大版七年级数学上册教学设计:2-4 绝对值
2.4 绝对值
【名师说课】 课程标准分析
本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算.通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力.最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值.教材分析
1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础.绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示负数后再比较.②求数轴上的两点间的距离,数a在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|.③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了.④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用.如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用.从前面四点的分析中,我们不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用.2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用.教法分析
通过引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识.教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算作准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等符号相反的两个数互为相反数;零的相反数是零.绝对值是有理数教学的难点,对它的认识和掌握要有一个过程,本节课的教学要求是让学生能熟练求出一个数的绝对值,不要拓展太多,不宜向学生提出过高要求.对于|a|的化简,可以让学有余力的学生考虑这一问题,本节课主要采用自主探究,讲练结合的方法进行教学.学法分析
数轴的作用对本节的影响很大,在理解绝对值的概念时应结合数轴,理解“距离”的含义;另外在求一个数的绝对值时用了分类讨论的方法,这种方法在解答有关绝对值的问题中非常重要,应加强理解应用.【教学目标】 知识与技能
1.理解绝对值的意义.2.会求一个数的绝对值.3.理解绝对值的非负性.过程与方法
1.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.2.通过对一个数的绝对值的求法体验对应思想.情感态度与价值观
通过师生活动,学生自我探究,让学生充分参与到学习过程中来.【教学重难点】
重点:绝对值的意义和绝对值的非负性.难点:正确理解绝对值的代数意义及其应用.【教学过程】
一、创设问题情境
设计意图:通过创设一定的问题情景,引发学生的思考,激发学生的学习热情,引入绝对值的概念.教师拿出准备好的数轴模型(数轴上白猫在表示-4的点上,黑猫在表示2的点上,花猫在表示7的点上,原点表示猫的家).猫妈妈说:今天放假,三只小猫可以到离家不超过5米的范围玩耍,否则就会有危险,回不了家.教师问:如果数轴上每个单位长度表示1米,同学们看一下三只小猫是否都能安全地回到家?
给学生充分的时间观察、思考、相互讨论、探究.二、分析探索,问题解决
设计意图:通过观察、讨论、归纳等方法,让学生结合数轴理解绝对值的概念.师:在生活中,有些问题我们只考虑数的大小而不考虑方向,如:为了计算汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程而不是行驶的方向,这就需要引进一个新的概念——绝对值.(板书课题)
带着这个问题自学课本第22页,并解决以下几个问题:(1)什么叫做绝对值?怎样用语言表达?其关键词是什么?(2)绝对值用符号怎样表示?
学生自己看书,勾画重点字词.(培养学生的自主学习习惯)
三、知识理顺,得出结论
设计意图:针对具体的问题,让学生自主探究,养成他们独立思考问题的能力,并在探究过程中学会学习,从中体验学习乐趣.(1)初步形成概念,由学生回答上面的两个问题(可让学生对照数轴,再说出几个正数、负数的绝对值).(2)深化对概念的理解:
①绝对值的意义是在什么条件下给出的?②主要解决的是什么问题?
由小组讨论解决:(引导学生得出:绝对值是利用数轴这一直观条件得出的.它主要是解决在数轴上表示数的点到原点有几个单位长度(距离)的问题,这是绝对值的几何意义.)
(3)互为相反数的两个数的绝对值有什么关系?(相等)
四、运用反思,拓展创新
设计意图:通过具体题目的解答,加深学生对绝对值的性质的理解,能选择具体的方法去解答问题.对绝对值性质要让学生从文字语言和符号语言两种形式去描述,学生在熟悉理解的过程中,在具体的题目中可以反复对照与其相应的式子来深化.1.典例解析
例 求下列各数的绝对值.-21,+,0,-7.8,15.5.师分析:先表示各数的绝对值,然后根据绝对值的意义写出结果,即“一添二去”.(添绝对值
符号,再去掉绝对值的符号)
解:|-21|=21,|+|=,|0|=0,|-7.8|=7.8,|15.5|=15.5.反例强化:-21=21对吗?|-21|是负数吗?
随堂练习:教材第24页练习第1题.2.议一议:①以上各数可以分为几类?请分一下.②每类数的绝对值与原数有什么关系?小组讨论后,写出它的关系.3.法则:绝对值的代数意义:正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是零.若a表示一个有理数,则|a|=或|a|=或|a|=
在由符号表示数的绝对值时,学生对绝对值的性质由感性阶段上升到了理性阶段,在这个过程中,渗透了对应思想、分类思想,还渗透了由具体到抽象的概括方法.随堂练习:教材第24页练习第2、3题.五、课堂小结
设计意图:通过小结使学生对本节课的内容有一个完整系统的认识,通过作业,巩固所学的知识,让学生谈谈本节课的收获.六、课后作业
1.将下列各数分别填在相应的集合中.-|-1|,-7.5,2,|-7.5|,|a|(a<0).正数集{
…},负数集{
…}.【答案】正数集{2,|-7.5|,|a|(a<0),…}, 负数集{-|-1|,-7.5,…}.2.若|a-1|+|b-2|=0,求a+b的值.【答案】由绝对值的非负性可知, |a-1|≥0,|b-2|≥0,而|a-1|+|b-2|=0, 因此|a-1|=0,|b-2|=0, 即a-1=0,b-2=0,所以a=1,b=2, 所以a+b=1+2=3.【板书设计】
一、创设问题情境
二、分析探索,问题解决
三、知识理顺,得出结论
四、运用反思,拓展创新 1.典例解析;2.议一议;3.法则.五、课堂小结
六、课后作业
第二篇:初中七年级数学上册《绝对值》教学设计
初中七年级数学上册《绝对值》教学设
计
第一部分:教学分析
(一)教学内容:
《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。
(二)教学目标:
根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
1,理解、掌握绝对值概念.体会绝对值的作用与意义; 2,能正确求出一个数的绝对值;
3,掌握绝对值的几何意义,渗透数形结合和分类思想.体验运用直观知识解决数学问题的成功;
(三)教学重、难点分析:
教学重点:掌握绝对值的概念会求已知数的绝对值.教学难点:掌握有理数的概念及分类。
(四)教学辅助手段
利用多媒体(实物投影)、学案进行辅助教学 第二部分:教学设计 教学过程 师生互动 设计意图
一、创设情境、引入新课
二、合作交流、探索新知 问题1:什么叫做绝对值?
怎么用数学符号表示一个数的绝对值?
问题2:互为相反数的绝对值的关系怎样?
问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?
问题4:设
a表示一个数,|a|等于什么?
三、拓展提高、应用巩固
1.判断下列说法是否正确:(1)符号相反的数互为相反数().(2)符号相反且绝对值相等的数互为相反数()
(3)一个数的绝对值越大,表示它的点在数轴上越靠右.()
(4)一个数的绝对值越大,表示它的点在数轴上离远点越远.()
2.求下列各数的绝对值:
,0,.四、概括总结、布置作业 课堂小结:
1、本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。
2、对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决 布置作业:
课本p11第1,2,3,教师展示投影,甲乙两车相向而行问题,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。
本环节教师关注重点:
学生能否区分方向和距离的不同。
学生能够理解从距离角度看数即绝对值的意义。
教师展示投影,讲解-10到原点的距离叫做-10的绝对值,然后引导学生回答10的绝对值表示什么意义?为加深记忆在大屏幕上展示-2,0.25绝对值代表什么意义? 学生口头回答老师的问题
对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?
学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。学生巩固练习。
本环节教师关注重点:
学生是否正确理解了绝对值的概念并自己概括出来。
通过以下表格内容: 数值-3-2 0 2 3 绝对值符号
绝对值
让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?
学生进行小组讨论共同分析总结,得出组内结论。
本环节教师关注重点:
学生能否从正负数的角度看数的绝对值。组织好小组讨论,使小组能真正发挥作用。
教师根据小组结论内容进行提问,得出绝对值的规律。
教师提醒和引导从正负数零的角度来思考。学生小组讨论后教师进行补充。
给学生2分钟时间完成习题
学生完成后,教师在黑板上进行板演写出完整的解题过程。
学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。
计算结果正确的学生举手示意教师;
本环节教师关注重点:(1)
学生对于绝对值概念的掌握及灵活应用。(2)
培养学生的分类的数学思维
学生独立完成,教师检查各组组长完成情况,并由组长检查组内成员,最后统一各组完成情况反馈给教师并进行展示 有本题引出下节课所要研究的重点内容。本环节教师关注重点:(1)
注重学生数学思维的形成(2)
提高学生的解题能力。
学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。
用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。
让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。
让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。
让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。
通过习题加深学生的记忆和对绝对值的概念的掌握。
通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。
第三篇:【备课参考】华师大版七年级数学上册教学设计:1-3 人人都能学会数学
1.3 人人都能学会数学
【教学目标】 知识与技能
学生通过几位数学家的故事,拓宽自身的见闻.过程与方法
1.通过华罗庚的故事,思考怎样学好数学.2.通过台阶上铺地毯问题的探索,培养用数学的意识.情感态度与价值观
学生通过一组数学格言,体验数学之美,从而激发自己学习数学的信心和兴趣,陶冶积极向上的生活态度和良好的思想道德情操,通过演讲数学家的故事,让学生的主体意识得到发挥.【教学重难点】
重点:通过讲数学家及身边人刻苦学习数学的故事,激发学生的学习兴趣;通过动手来体现“人人都能学会数学”这一主题.难点:培养学生初步应用数学的意识以及打破思维定势,大胆创新的精神.【教学过程】
一、情境导入
数学哺育着我们成长,数学是我们生活中的好朋友,同时它又改变了我们的思维方式,使我们变得更聪明.出示:1+2+3+4+…+97+98+99+100=?(给定1分钟,看谁算出来)
此题思考策略:从整体的角度看问题.统计算对的人数,予以表扬.二、数学家成功的经历与启示 1.数学家成功的经历(1)介绍高斯的故事
这正是德国大数学家高斯小时候做过的一道题.1787年,年仅10岁的小高斯在课堂上首先用这种简洁的方法算出了结果.后来他成为了世界著名的数学家,有“数学王子”的美称.小高斯10岁解决的数学题我们十二三岁也能很快算出,这说明数学并不神秘,只要通过努力,人人都能学会数学.高斯工作勤奋,精益求精,他的研究遍及数学的各个领域,取得极高的成就.后人这么评价高斯:“如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯.”
同学们知道其他著名数学家的名字吗?你知道华罗庚、陈景润、苏步青等数学家是怎样学好数学、走向成功的吗?让学生起来进行介绍,充分进行交流补充.(2)自学成长的华罗庚(3)视数学为生命的陈景润
2.从数学家的成功经历中,你获得了什么启示?
(1)有兴趣;(2)有刻苦钻研的精神;(3)善于发现和提出问题;(4)善于独立思考……这些宝贵的经验值得我们学习.三、数学应用举例
例1 我国著名数学家苏步青年轻时候做过这样一道题:“甲和乙从东西两地同时出发,相对而行,两地相距10千米.甲每小时走3千米,乙每小时走2千米,几小时两人相遇?如果甲带了一只狗,和甲同时出发;狗以每小时5千米的速度向乙奔去,遇到乙后即回头向甲奔去;遇到甲后又
回头向乙奔去,直到甲、乙两人相遇时狗才停住.问这只狗共奔跑了多少千米路?”
让学生充分思考后,可在小组内进行交流讨论,然后教师可让学生展示成果;最后教师点拨给出答案.例2 教材第6页中间的图形题(铺地毯问题)
给学生充分的时间思考、探究,让学生回答,老师可板书,最后做总结性点拨、指导.例3 教材第6页“你知道吗?”.学生自己完成,然后可小组交流,老师点拨指导.四、巩固练习
(1)如图所示,图①、②、③中各有多少个三角形?
(2)你能否找出其中的规律,并根据规律得出图④中有多少个三角形?并数一下,验证你找出的规律.(3)说出图⑤中有多少个三角形?(4)请用式子表示你找出的一般规律.五、课堂小结
通过本节的学习,你对学好数学有哪些新的认识?
六、课后作业
如图,把长方形ABCD的对角线AC分成几段,以每一段为对角线做几个小长方形,若AB=2,BC=4,则所有小长方形的周长之和是多少?
【解析】把对角线AC分成几段,以每一段为对角线的几个小长方形的长之和等于长方形ABCD的长AD+BC;宽之和等于长方形ABCD的宽AB+CD,所以可求所有小长方形的周长之和等于长方形ABCD的周长.【答案】所有小长方形的周长之和为4×2+2×2=12.【板书设计】
一、情境导入
二、数学家成功的经历与启示
三、数学应用举例 例
1、例
2、例3
四、巩固练习
五、课堂小结
六、课后作业
【概括整合】
一、知识梳理
与数学交朋友——人人都能学会数学——运用数学知识解决实际问题.二、知识要点
通过科学家华罗庚、陈景润、高斯的故事,教育学生要认真观察、刻苦钻研、善于发现问题,要学会利用所学的数学知识解决生活中的实际问题.【备课资料】
苏步青:1902~2003,浙江义乌人,著名数学家,中国科学院院士.曾任复旦大学校长.他是国际公认的几何学权威,我国微积分几何学派的创始人.
第四篇:新课标人教版七年级数学上册《绝对值》教学设计二
一:教学目标: 知识与技能目标:(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。过程与方法目标:(1)、通过运用“||”来表示一个数的绝对值,培养学生[此文转于斐斐课件园ffkj.net]的数感和符号感,达到发展学生抽象思维的目的;(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; 情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“想一想”“议一议”“做一做”问题的思考及回答,培养学生[此文转于斐斐课件园ffkj.net]积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生[此文转于斐斐课件园ffkj.net]合作探索、合作交流、合作学习的新型学习方式。二:教学重点和难点
重点: 理解绝对值的概念;
难点:求一个数的绝对值;比较两个负数的大小。
本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,解读探究;第三环节:应用迁移,巩固提高;第四环节:总结反思,拓展升华;第五环节:布置作业。
第一环节创设情境,导入新课
活动内容:让学生观察图画,并回答问题,“大象和两只小狗分别距离原点多远?”利用图画将学生引入一定的问题情境,学生积极思考问题,解决问题,进入主题的重要环节。,0,-7.8。
(学生充分思考后,让学生回答,老师板书)3.每两个同学相互给对方任意写出三个正数、三个负数和零,然后要求对方求出它们的绝对值。
(给学生充分时间,让学生相互出题、答题)
4.通过上面例子,引导学生归纳总结出一个数的绝对值与这个数的关系。
(老师可在学生充分发表自己的观点后,再与学生一起归纳总结出:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)
5.“做一做”:
(1)在数轴上表示下列各数,并比较它们的大小:
-1.5,-3,-1,-5;
(2)求出(1)中各数的绝对值,并比较它们的大小;
(3)你发现了什么?
(老师可引导学生多举一些例子,让学生合作讨论完成)活动目的:学生根据情境感知,初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳,总结出绝对值的内在涵义,体现学生的主体性。探索用绝对值比较两负数的方法,体验概念的形成过程。实际效果:同桌之间举例,效果良好,体现了“自主——协作”学习。积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。第三环节:应用迁移,巩固提高 活动内容:
例2 比较下列每组数的大小:
(1)-1和-5;(2)和-2.7。
(给学生充分的时间思考、探究不同解法,并评价不同方法之间的差异。)随堂练习:
1.一个数的绝对值是它本身,那么这个数一定是。2.绝对值小于3的整数有个,分别是。
3.如果一个数的绝对值等于4,那么这个数等于。4.用&、<、=号填空 │-5│0,│+3│0, │+8││-8│,│-5││-8│.5.在数轴上表示下列各数,并求它们的绝对值:,6,-3,;
6.比较下列各组数的大小:
(1)(2)
(3)(4)活动目的:对本节知识进行巩固训练,进一步培养学生[此文转于斐斐课件园ffkj.net]分析问题、解决问题的能力。通
过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。实际效果:通过以上题组训练,学生对本节知识有了更深一步的理解,并进一步明确了绝对值的内涵与意义,解决问题的能力得到了大大提高。
第四环节:总结反思,拓展升华
活动内容:总结:1.本节学习的数学知识;2.本节学习的数学方法。
(老师可先鼓励学生描述出自己的认识与收获,然后再作进一步归纳总结。)反思:两个负数比较大小,方法有几种?请举例说明。
拓展:1.字母a表示一个数,-a表示什么?-a一定是负数吗? 2.已知:,求2x+3y的值。
活动目的:通过对绝对值定义,代数意义及数学思想方法的归纳总结,充分发挥学生的自主归纳能力,使学生能够系统的、完全的理解知识点。并明确在数学思想和方法的指导下,运用数学方法解决数学问题的重要性。在反思与拓展中使学生的认识得到经一步升华。 实际效果:学生能够互相点评,共同归纳,并做进一步反思与拓展,这样既发展了学生自主学习能力,又强化了协作精神,同时使知识得到了进一步完善与升华。
第五环节:布置作业 必做题:
习题2.3,知识技能第2,3,4题. 选做题: 若则a0;若则a0.四、教学反思:
本节课设计了一个三只动物离原点距离的问题情境,使本节课一开始就充满趣味,让学生产生强烈的好奇心,进而积极主动地投入到学习之中,然后安排同学之间互相合作交流,给同学们创造了很好的学习氛围,激发了同学们参与学习的积极性,使原本难以理解的绝对值概念变得简单;另外,在整节课中我还给学生提供了很多探索问题的时间和空间,并让学生自己归纳和总结获得新知识,锻炼了学生有条理地表达自己的思想以及在与他人交流中学会表达自己思想的能力。
第五篇:七年级数学上册 2.3 绝对值教学设计 (新版)北师大版
绝对值
【教学目标】
知识与技能
1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.过程与方法
培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.情感、态度与价值观
通过由具体实例抽象概括的独立思考和合作学习的过程培养学生积极主动的学习习惯.【教学重难点】
重点:让学生理解绝对值的概念,并掌握求一个已知数的绝对值的方法.难点:绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.【教学过程】
一、创设情境,引入新课
师:同学们能发现3与-3有什么相同点吗?与-呢?5与-5呢? 生:每对数的两个数只有符号不同.师:对!像这样,如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数还是0,而且每对相反数在数轴上到原点的距离都相等.引导学生从代数与几何两方面的特点出发总结得出相反数的定义.从几何方面可以说,在数轴上原点两旁、离原点距离相等的两个点所表示的两个数互为相反数;从代数方面说,只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课
师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知,|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|=
,=
,|+8.2|=
;(2)|0|=
;(3)|-3|=
,|-0.2|=
,|-8.2|=
.教师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.或写成:|a|= 3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解
师:下面我们一起来做几个例题巩固一下.【例1】 求下列各数的绝对值:-7,+,-4.75,10.5.解:=7;=;|-4.75|=4.75;|10.5|=10.5 【例2】 化简:(1);(2)-.解:(1)==;(2)-=-1 【例3】 判断下列说法是否正确.(1)-5是5的相反数.()(2)5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()(5)正数的相反数是负数,负数的相反数是正数.()解(1)√(2)√(3)√(4)×(5)√
【例4】 计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)-(-).分析:求一个数的绝对值必须判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.解:(1)0.62;(2)0;(3).【例5】 比较下列每组数的大小:(1)-1和-5;(2)-和-2.7.解:(1)因为|-1|=1,|-5|=5,1<5, 所以-1>-5(2)因为=,|-2.7|=2.7,<2.7, 所以->-2.7.四、课堂小结 教师引导学生小结: 1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.