第一篇:七年级数学上册1.2.4绝对值教案(新版)新人教版(新)(模版)
绝对值
教学目标:
1、掌握绝对值的概念,会求一个有理数的绝对值.
2、会用绝对值比较两个或多个有理数的大小.
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学重点: 1.给出一个数会求它的绝对值。2.利用数轴和绝对值比较有理数的大小。教学难点:绝对值的几何意义;利用绝对值和数轴比较两个负数的大小。教学过程:
一、创设问题情境,引入新课
活动1:两辆汽车从同一处O出发,分别向东、向西方向行驶10千米,到达A、B两处(如图),它们行驶路程的远近(线段OA、OB的长度)相同吗?
它们行驶的路程都是10千米.教师指出:A、B两点到原点O的距离,就是我们这节课要学习的A、B两点所表示的有理数的绝对值。
二、讲授新课:
探究一:绝对值的定义
活动2:借助于数轴给出绝对值的定义:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
注:这里a可以是正数,也可以是负数和0.例如:在问题1的问题中,A、B两点分别表示10和一10,它们与原点的距离都是10个单位长度,所以10和一10的绝对值都是10,即1010,1010。显然,00。
因为点A、B表示的数互为相反数,且它们的绝对值相等,因此我们可得出:互为相反数的两个数的绝对值相等.活动3:在数轴上表示出下列各数,并求出它们的绝对值。-2,1.5,0,7,-3.5,5. 解:依题意得:数轴可表示为:
如图所示数轴上的A、B、O、C、D、E分别表示-2,1.5,0,7,-3.5,5. |-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5.
根据此题的结果我们可归纳总结正数的绝对值、负数的绝对值、0的绝对值各有的特点,因此可得出 绝对值的性质:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.代数表示(数学语言)是:字母a可个有理数。(1)当a是正数时,a= a ;(2)当a是负数时,a=-a ;(3)当a是0时,a= 0.活动4:例1:求 +
8、-
12、-
3、+
3、-1.6的绝对值.
解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;∣-1.6∣=1.6.思考:求一个有理数的绝对值的方法: 1.利用数轴去求一个数的绝对值;
2.只需知道这个数是正数、负数还是0,利用绝对值的性质即可求出一个数的绝对值。活动5:跟踪练习:
写出下列各数的绝对值: 6,-8,-3.9,52,-,100,0 211解:6=6,-8=8,-3.9=3.9,=,-525222=,100=100,0=01111.判断下列说法是否正确: 符号相反的数互为相反数;
一个数的绝对值越大,表示它的点在数轴上越靠右;
(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;
a(4)当a≠0时,总是大于0.答案:(1)错(2)错(3)对(4)对.判断下列各式是否正确:
5=-5(1)(2)-5=-5(3)
-5=-5.答案:(1)对(2)错(3)错
探究二:有理数的比较大小。活动6:观察下图给出的一周中每天的最高气温和最低气温,其中最低的是-4 ℃,最高的是 9 ℃,你能将这14个温度按从低到高的顺序排列吗?
学生将上图中的14个温度按从你到高排列为:
一4,一3,一2,一1,0,1,2,3,4,5,6,7,8,9.数学中规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。由这个规定可以比较上述各数(如一4和一3,一2和0,一1和1)的大小。一4<一3,一2<0,一1<1.由学生分组讨论:不通过数轴就可以比较两个有理数大小的方法呢? 结论:
(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。活动7:例2:较下列各对数的大小:(1)一(一1)和一(+2)(2)83和 217(3)一(一0.3)和13
解:(1)先化简,-(-1)=1,-(+2)=-2,因为正数大于负数,所以1>-2,即-(-1)>-(+2);
83883399838=,-==,,--,21所以21>7。(2)因为2121772121217-1111-=,3(3)因为-(-0.3)=0.3,330.3<,所以-(-0.3)<3.师生共同归纳总结:
异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值;特别是两个负数比较大小。
活动:8:跟踪练习:
1.比较下列各对数的大小:
(1)3和-5;(2)-3和-5;(3)-2.5和--2.25;(4)-35和-34.解:(1)3>-5;(2)-3>-5;(3)-2.5<--2.25;(4)-335>-4.2.比较下列各组数的大小.(1)45与34(2)13,12,|13|,0.
解:(1)|-45|=45=1620,|-34|=3154=20,因为1620>154320,所以-5 <-4;
(2)因为-|-13|=-13>-12,所以 13 >0>-|-113|>-2.
课堂小结:这节课我们学习了哪些知识?
数轴上表示数a的点与原点的距离叫做数a的绝对值。(1)如果a>0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0.互为相反数的两个数的绝对值相等.4.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。5.(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。课后作业:
课本P 14习题1.2 的第5、6、7题。
第二篇:1.2.4绝对值学案-人教版七年级上册数学
教学方案
年级:七年级
学科:数学
第一章有理数
第2小节
第4课时
累计
课时
主备教师:
上课教师:
审批领导:
授课时间:
****年**月**日
课
题
1.2.4
绝对值
教学目标
1.理解绝对值的几何意义和代数意义;
2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;
3.会比较两个有理数的大小。
重点难点
重点:给出一个数,会求它的绝对值;运用有理数大小比较法则,借助数轴比较两个有理数的大小。
难点:理解绝对值的几何意义;利用绝对值比较两个负数的大小。
法制渗透
中考链接
在中考中常考填空题或选择题
一、激趣导入
星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到金清,下午她又向西行30千米,回到家中(学校、金清、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
(小组讨论,交流合作,动手操作)
二、预习分享
采用教师抽查或小组互查的方法检查学生的预习情况:
1.绝对值的概念.2.有理数的大小应怎样比较?
三、合作探究
探究1:
有理数的绝对值
通过上面问题可知,实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示金清和黄老师家的点,观察图形,说出金清和黄老师家与学校的距离.
教师点评:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做
探究2:绝对值的性质
学生讨论:
计算:=_____,=_______;
=_______,=_____;=__.你能从上面的题目中发现什么规律吗?
教师点评:
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.探究2:有理数的大小比较
(1)正数大于0,0大于负数;
(2)两个负数,绝对值大的反而小。
四、目标检测
[基础题]
1、绝对值等于它本身的数是,绝对值等于它的相反数的数是
.[能力提高题]
2、说出下列各数的绝对值:
+23,0,[探索拓展题]
3、若则;
若则
;若则___.4、若是有理数,则一定是
()
A.是正数
B.非正数
C.是负数
D.非负数
五、小结
本节课你学到了什么?还有哪些疑惑?
1.有理数的绝对值
2.绝对值的性质
3.有理数的大小比较
六、巩固目标
作业:课本P14
第5题
七、安排下节预习
预习课本P11至P13“1.3.1
有理数的加法”并回答:
1.有理数加法的意义.2.能用有理数加法法则进行有理数的加法运算。
修订意见
反思
第三篇:七年级数学上册 1.2.4绝对值教案1 人教新课标版
人教版七年级第一章第二节 绝对值(一)【教学目标】
(一)知识技能
1.使学生掌握有理数的绝对值概念及表示方法.2.使学生熟练掌握有理数绝对值的求法和有关计算问题.(二)过程方法
1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力.2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.3.给出一个数,能求它的绝对值.(三)情感态度
从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.教学重点
给出一个数会求它的绝对值.教学难点
绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数.【情景引入】
问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值. 【教学过程】 1.绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值).记作|a|.例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6.同样可知|―4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:(1)|+2|=,15=,|+8.2|= ;(2)|0|= ;
(3)|―3|=,|―0.2|=,|―8.2|=.概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;
(3)一个负数的绝对值是它的相反数.即:①若a>0,则|a|=a;
a(a0)a0(a0)②若a<0,则|a|=–a; 或写成:.a(a0)③若a=0,则|a|=0; 3.绝对值的非负性
由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.4.例题解析
例1:求下列各数的绝对值:7,解:71=7;212121,―4.75,10.5.10110=1;|―4.75|=4.75;|10.5|=10.5.1011例2: 化简:(1);(2)1.2311解:(1)12212;(2)113113.(3)|–2|–
3例3:计算:(1)|0.32|+|0.3|;
(–2).3
(2)|–4.2|–|4.2|;
分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.解答:(1)0.62;(2)0;(3).43
解:|8|=8,|-8|=8,|1111|=,|-|=,|0|=0,|6-|=6-,|-5|=5- 4444例5.,求x.分析:本题应用了绝对值的一个基本性质:互为相反数的两个数的绝对值相等.即或解:或或,由此可求出正确答案
或
.补充:一对相反数的绝对值相等.【课堂作业】
1.在括号里填写适当的数:
-|+3|=(); |()|=1,|()|=0;-|()|=-2.
121,-8.3,0,+0.01,-,1的绝对值.35233.(1)绝对值是的数有几个?各是什么?
42.求+7,-2,(2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?(4)求绝对值小于4的所有整数.4.计算:
(1)|-15|-|-6|;(2)|-0.24|+|-5.06|;(3)|-3|×|-2|;(4)|+4|×|-5|;(3)|-12|÷|+2|;(6)|20|÷|-
1| 25.检查了5个排球的重量(单位:克),其中超过标准重量记为正数,不足的记为负数,结果如下:
-3.5,+0.7,-2.5,-0.6.其中哪个球的重量最接近标准?
参考答案: 1.3.5 11-5-3 ±1 0 ±2 211|=,|-8.3|=8.3,332211|=,|1|=1 55222.|+7|=7,|-2|=2,||0|=0,|+0.01|=0.01,|-3.(1)2个,33和(2)1个,0(3)没有 44(4)0,-1,1,-2,2,-3,3 4.(1)9;(2)5.3;(3)6;(4)20;(3)6;(6)40 5.∵|-3.5| > |-2.5| > |+0.7| > |-0.6| ∴第4个排球最接近标准.【教学反思】
绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用.本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的难点.课堂上留给学生一定的提问时间,很容易暴露学生知识的缺陷,通过问题引导学生联想,大胆猜想,可以拓宽学生的知识面,增强知识的系统性,加深对课本知识的理解,培养学生的创新意识和发散思维.教师在课堂上也往往能收到意想不到的收获.
第四篇:七年级数学上册《绝对值》教案 新人教版
广东省广州市白云区汇侨中学七年级数学上册《绝对值》教案
新人教版 新人教版
今天我说课的内容是人教版七年级上册1.2.4绝对值内容。首先,我对本节教材进行一些分析:
一、教材分析(说教材):
(一)、教材所处的地位和作用:
本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
(二)、教育教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1、知识目标: 1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义。3)能利用分类讨论思想来理解绝对值的代数定义;理解字母a的任意性。
2、能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标: 通过对绝对值的教学,让学生初步认识到数学知识来源于实践,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
(三):重点,难点以及确定的依据:
本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈 谈:
二、教学策略(说教法)
(一)、教学手段:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,相反数,对正负数,相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用多媒体课件,向学生提供更多的活动机会和空间,使学生在动脑、动手的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了七个教学环节: 1、温故知新,激发情趣 2、得出定义,揭示内涵 3、手脑并用,深入理解、启发诱导,初步运用 5、反馈矫正,注重参与、归纳小结,强化思想 7、布置作业,引导预习
(二)、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据七年级学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、问答法、课堂讨论法,引导学生来理解教材中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。三:学情分析:(说学法)
1、知识掌握上,七年级学生刚刚学习有理数中的相反数,对相反数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
2、学生学习本节课的知识障碍。学生对绝对值两种概念,不易理解,容易出错,所以教学中教师应予以简单明白、深入浅出的分析。
3、由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用多媒体课件,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
4、心理上,学生对数学课的重视与兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。最后我来具体谈一谈这一堂课的教学过程:
四、教学程序设计
(一)、温故知新,激发情趣:
首先打出第一张幻灯片复习提问:什么叫做相反数?学生回答后让大家讨论:你能找出互为相反数的两个数在数轴上表示的点的共同特点吗?学生会积极回答第一个问题,但第二个问题学生可能难以准确回答,于是打出第二张幻灯片引导学生仔细观察,认真思考。从而引出课题:绝对值。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
由于学生是第一次接触绝对值这样比较深奥的数学名词,所以我利用数轴在第三张幻灯片里直接给出绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,(absolute value)这个定义学生接受起来比较容易。
给出定义后引导学生讨论:“定义里的数a可以表示什么样的数?(通过教师的亲切的语言启发学生,以培养师生间的默契)通过讨论由师生共同得到:绝对值定义里的数a可以是正数,负数和0。
然后再回到第一张幻灯片里提出的问题:互为相反数的两个数的绝对值有什么关系?
(三)、手脑并用,深入理解:
1、在上一环节与学生一起理解了绝对值的定义后,我再提出问题:如何由文字语言向数学符号语言的转化,即如何简单地标记绝对值,而不用汉字?在此不用提问学生,采取自问自答形式给出绝对值的记法。
2、为进一步强化概念,在对绝对值有了正确认识的基础上,请学生做教材的课堂练习第一题,写出一些数的绝对值。可以请学生起立回答。我就学生的回答情况给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并再次强调绝对值的定义。
3、在完成第一题的练习后,我又给出一新的幻灯片,并提出问题:议一议 一个数的绝对值与这个数有什么关系?启发学生举一些实际的例子来发现规律,并总结规律。从而引出绝对值的第二个定义。
(四)、启发诱导,初步运用:
有了绝对值的两个定义后,我安排了10道不同层次的判断题让学生思考。特别注重对于不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点我再次给出三道问题:
1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数? 2)绝对值是0的数有几个?各是什么?
3)绝对值小于3的整数一共有多少个?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
视学生的反馈情况以及剩余时间的多少我还预备了五道课堂升华的思考题,再次强化训练,启发学生的思维。
(六)、归纳小结,强化思想:
(七)、布置作业,引导预习:
1、全体学生必做课本习题 1.2 3,4,5,10。
2、选作两道思考题:(1)求绝对值不大于2的整数;(2)已知x是整数,且2.5<|x|<7,求x. 总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
第五篇:【人教版】七年级上册数学 导学案 1.2.4《绝对值》(模版)
百度文库
教学资料
数学:1.2.4《绝对值》学案(人教版七年级上)【学习目标】:
1、理解、掌握绝对值概念.体会绝对值的作用与意义;
2、掌握求一个已知数的绝对值和有理数大小比较的方法;
3、体验运用直观知识解决数学问题的成功;
【重点难点】:绝对值的概念与两个负数的大小比较 【导学指导】
一、知识链接 问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)
二、自主探究
1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是 到原点的距离等于10的数有 个,它们的关系是一对.这时我们就说10的绝对值是10,—10的绝对值也是10; 例如,—3.8的绝对值是3.8;17的绝对值是17;—6
1的绝对值是 3一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣.2、练习
(1)、式子∣-5.7∣表示的意义是.(2)、—2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)、∣24∣=.∣—3.1∣=,∣—
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;
1∣=,∣0∣= ; 3教学资料
学案设计
百度文库
教学资料
0的绝对值是.用式子表示就是:
1)、当a是正数(即a>0)时,∣a∣= ; 2)、当a是负数(即a<0)时,∣a∣= ; 3)、当a=0时,∣a∣= ;
4、随堂练习P12第1、2大题(直接做在课本上)
5、阅读思考,发现新知
阅读P12问题—P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要 左边的数.也就是:
1)、正数 0,负数 0,正数大于负数.2)、两个负数,绝对值大的.【课堂练习】:
1、自学例题 P13(教师指导)
2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣
【要点归纳】:
一个正数的绝对值是 ;一个负数的绝对值是它的 ; 0的绝对值是.教学资料
学案设计
百度文库
教学资料
【拓展练习】
1.如果2a2a,则a的取值范围是 …………………………()A.a>O
B.a≥O
C.a≤O
D.a<O 2.x7,则x______; x7,则x______. 3.如果a3,则a3______,3a______.
4.绝对值等于其相反数的数一定是…………………………………(A.负数 B.正数 C.负数或零 D.正数或零
5.给出下列说法:
①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等. 其中正确的有…………………………………………………()A.0个
B.1个
C.2个
D.3个
【总结反思】:
教学资料
学案设计)